Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; : e202400398, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775649

ABSTRACT

Synthesis and photophysical properties of a fluorescent probe HBD is described. Probe upon interaction with metal ions, anions and nucleoside pyrophosphates (NPPs) showed fluorescence quenching with Cu2+ due to chelation enhanced quenching effect (CHEQ). Moreover, interaction of ensemble HBD.Cu2+ with anions and NPPs showed fluorescence "turn-On" response with ATP selectively. "On-Off-On" responses observed with Cu2+ and ATP is attributed to an interplay between ESIPT and TICT processes. Cyclic voltammogram of probe exhibited quasi-reversible redox behaviour with three oxidation and two reduction potentials and the change in band gaps of probe suggested the interaction with Cu2+ and ATP. The 2:1 and 1:1 binding stoichiometry for an interaction between probe and Cu2+ (LOD, 62 nM) and ensemble, HBD.Cu2+ with ATP (LOD, 0.4 µM) respectively are realised by Job's plot and HRMS data. Cell imaging studies carried out to detect Cu2+ and ATP in HeLa cells. Also, the output emission observed with Cu2+ and ATP is utilized to construct an implication (IMP) logic gate. Test paper strips showed naked-eye visible color responses to detect Cu2+ and ATP. In real water samples probe successfully detected copper (0.03 µM) between 5-6.5 ppb level (ICP-MS method).

2.
Int J Biol Macromol ; 218: 506-518, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35817241

ABSTRACT

Delayed wound healing in patients having type-II diabetes mellitus (T2DM) often results in a high rate of amputation. We report an innovative Guar Gum-based macroporous hydrogel (HG) infused with an antibacterial agent (Ag NPs), and antioxidant, epigallocatechin gallate (EGCG) to address rapid wound healing and interestingly could inhibit the associated pathophysical bone infection in a high-fat-diet-induced T2DM C57BL/6 mice model. The HG-Ag-EGCG elicits scar-free wound healing in subcutaneous wounds and histopathological evidence confirmed HG-Ag-EGCG hydrogel patch elicits better wound healing through enhanced cell proliferation, mature connecting tissue fiber formation, minimum void spaces formation, and better re-epithelialization when compared with a market available hydrogel patch material (Luofucon®). Supportive of the in vivo outcomes, in vitro experiments delineated better-wound closure due to improved management of ROS by the HG-Ag-EGCG. Additionally, a favorable non-toxicity outcome assessed through both in vitro and in vivo conditions confirmed its potential applicability in clinical wound care management.


Subject(s)
Diabetes Mellitus, Type 2 , Silver , Animals , Catechin/analogs & derivatives , Diabetes Mellitus, Type 2/drug therapy , Hydrogels/pharmacology , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/pharmacology , Silver/pharmacology , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...