Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Sci ; 149(3): 124-138, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35641025

ABSTRACT

Protein-protein interactions (PPI) of co-stimulatory molecules CD2-CD58 are important in the early stage of an immune response, and increased expression of these co-stimulatory molecules is observed in the synovial region of joints in rheumatoid arthritis (RA) patients. A CD2 epitope region that binds to CD58 was grafted on to sunflower trypsin inhibitor (SFTI) template structure to inhibit CD2-CD58 PPI. The peptide was incorporated with an organic moiety dibenzofuran (DBF) in its structure. The designed peptidomimetic was studied for its ability to inhibit CD2-CD58 interactions in vitro, and its thermal and enzymatic stability was evaluated. Stability studies indicated that the grafted peptidomimetic was stable against trypsin cleavage. In vivo studies using the collagen-induced arthritis (CIA) model in mice indicated that the peptidomimetic was able to slow down the progress of arthritis, an autoimmune disease in the mice model. These studies suggest that with the grafting of organic functional groups in the stable peptide template SFTI stabilizes the peptide structure, and these peptides can be used as a template to design stable peptides for therapeutic purposes.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Helianthus , Peptidomimetics , Animals , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , CD58 Antigens/chemistry , CD58 Antigens/metabolism , Helianthus/chemistry , Helianthus/metabolism , Humans , Immunity , Immunomodulation , Mice , Peptides/pharmacology , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Peptidomimetics/pharmacology , Peptidomimetics/therapeutic use , Trypsin Inhibitors/therapeutic use
2.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800723

ABSTRACT

The therapeutic index of chemotherapeutic agents can be improved by the use of nano-carrier-mediated chemotherapeutic delivery. Ligand-targeted drug delivery can be used to achieve selective and specific delivery of chemotherapeutic agents to cancer cells. In this study, we prepared a peptidomimetic conjugate (SA-5)-tagged doxorubicin (Dox) incorporated liposome (LP) formulation (SA-5-Dox-LP) to evaluate the targeted delivery potential of SA-5 in human epidermal growth factor receptor-2 (HER2) overexpressed non-small-cell lung cancer (NSCLC) and breast cancer cell lines. The liposome was prepared using thin lipid film hydration and was characterized for particle size, encapsulation efficiency, cell viability, and targeted cellular uptake. In vivo evaluation of the liposomal formulation was performed in a mice model of NSCLC. The cell viability studies revealed that targeted SA-5-Dox-LP showed better antiproliferative activity than non-targeted Dox liposomes (Dox-LP). HER2-targeted liposome delivery showed selective cellular uptake compared to non-targeted liposomes on cancer cells. In vitro drug release studies indicated that Dox was released slowly from the formulations over 24 h, and there was no difference in Dox release between Dox-LP formulation and SA-5-Dox-LP formulation. In vivo studies in an NSCLC model of mice indicated that SA-5-Dox-LP could reduce the lung tumors significantly compared to vehicle control and Dox. In conclusion, this study demonstrated that the SA-5-Dox-LP liposome has the potential to increase therapeutic efficiency and targeted delivery of Dox in HER2 overexpressing cancer.

3.
Chem Biol Drug Des ; 97(3): 607-627, 2021 03.
Article in English | MEDLINE | ID: mdl-32946175

ABSTRACT

Peptides were designed to inhibit the protein-protein interaction of CD2 and CD58 to modulate the immune response. This work involved the design and synthesis of eight different peptides by replacing each amino acid residue in peptide 6 with alanine as well as grafting the peptide to the sunflower trypsin-inhibitor framework. From the alanine scanning studies, mutation at position 2 of the peptide was shown to result in increased potency to inhibit cell adhesion interactions. The most potent peptide from the alanine scanning was further studied for its detailed three-dimensional structure and binding to CD58 protein using surface plasmon resonance and flow cytometry. This peptide was used to graft to the sunflower trypsin inhibitor to improve the stability of the peptide. The grafted peptide, SFTI-a1, was further studied for its potency as well as its thermal, chemical, and enzymatic stability. The grafted peptide exhibited improved activity compared to our previously grafted peptide and was stable against thermal and enzymatic degradation.


Subject(s)
CD2 Antigens/metabolism , CD58 Antigens/metabolism , Peptides, Cyclic/chemistry , Amino Acid Sequence , Binding Sites , Binding, Competitive , CD2 Antigens/chemistry , CD58 Antigens/chemistry , Cell Adhesion/drug effects , Cell Line , Drug Design , Humans , Molecular Docking Simulation , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Protein Binding , Protein Interaction Maps/drug effects , Protein Stability , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Trypsin Inhibitors/pharmacology
4.
J Cancer ; 11(20): 5982-5999, 2020.
Article in English | MEDLINE | ID: mdl-32922539

ABSTRACT

Studies related to lung cancer have shown a link between human epidermal growth factor receptor-2 (HER2) expression and poor prognosis in patients with non-small cell lung cancer (NSCLC). HER2 overexpression has been observed in 3-38% of NSCLC, while strong HER2 protein overexpression is found in 2.5% of NSCLC. However, HER2 dimerization is important in lung cancer, including EGFR mutated NSCLC. Since HER2 dimerization leads to cell proliferation, targeting the dimerization of HER2 will have a significant impact on cancer therapies. A peptidomimetic has been designed that can be used as a therapeutic agent for a subset of NSCLC patients overexpressing HER2 or possessing HER2 as well as EGFR mutation. A cyclic peptidomimetic (18) has been designed to inhibit protein-protein interactions of HER2 with its dimerization partners EGFR and HER3. Compound 18 exhibited antiproliferative activity in HER2-positive NSCLC cell lines at nanomolar concentrations. Western blot analysis showed that 18 inhibited phosphorylation of HER2 and Akt in vitro and in vivo. Stability studies of 18 at various temperature and pH (pH 1 and pH 7.6), and in the presence of liver microsomes indicated that 18 was stable against thermal and chemical degradation. Pharmacokinetic parameters were evaluated in nude mice by administrating single doses of 4 mg/kg and 6 mg/kg of 18 via IV. The anticancer activity of 18 was evaluated using an experimental metastasis lung cancer model in mice. Compound 18 suppressed the tumor growth in mice when compared to control. A proximity ligation assay further proved that 18 inhibits HER2:HER3 and EGFR: HER2 dimerization. Overall, these results suggest that 18 can be a potential treatment for HER2-dimerization related NSCLC.

5.
Curr Med Chem ; 27(32): 5274-5316, 2020.
Article in English | MEDLINE | ID: mdl-30854949

ABSTRACT

Eighty-five percent of patients with lung cancer present with Non-small Cell Lung Cancer (NSCLC). Targeted therapy approaches are promising treatments for lung cancer. However, despite the development of targeted therapies using Tyrosine Kinase Inhibitors (TKI) as well as monoclonal antibodies, the five-year relative survival rate for lung cancer patients is still only 18%, and patients inevitably become resistant to therapy. Mutations in Kirsten Ras Sarcoma viral homolog (KRAS) and epidermal growth factor receptor (EGFR) are the two most common genetic events in lung adenocarcinoma; they account for 25% and 20% of cases, respectively. Anaplastic Lymphoma Kinase (ALK) is a transmembrane receptor tyrosine kinase, and ALK rearrangements are responsible for 3-7% of NSCLC, predominantly of the adenocarcinoma subtype, and occur in a mutually exclusive manner with KRAS and EGFR mutations. Among drug-resistant NSCLC patients, nearly half exhibit the T790M mutation in exon 20 of EGFR. This review focuses on some basic aspects of molecules involved in NSCLC, the development of resistance to treatments in NSCLC, and advances in lung cancer therapy in the past ten years. Some recent developments such as PD-1-PD-L1 checkpoint-based immunotherapy for NSCLC are also covered.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/genetics , Genotype , Humans , Immunotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...