Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Int J Antimicrob Agents ; 62(3): 106907, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37385564

ABSTRACT

Salmonella enterica is a food-borne pathogen that poses a severe threat to both poultry production and human health. Antibiotics are critical for the initial treatment of bacterial infections. However, the overuse and misuse of antibiotics results in the rapid evolution of antibiotic-resistant bacteria, and the discovery and development of new antibiotics are declining. Therefore, understanding antibiotic resistance mechanisms and developing novel control measures are essential. In the present study, GC-MS-based metabolomics analysis was performed to determine the metabolic profile of gentamicin sensitive (SE-S) and resistant (SE-R) S. enterica. Fructose was identified as a crucial biomarker. Further analysis demonstrated a global depressed central carbon metabolism and energy metabolism in SE-R. The decrease in the pyruvate cycle reduces the production of NADH and ATP, causing a decrease in membrane potential, which contributes to gentamicin resistance. Exogenous fructose potentiated the effectiveness of gentamicin in killing SE-R by promoting the pyruvate cycle, NADH, ATP and membrane potential, thereby increasing gentamicin intake. Further, fructose plus gentamicin improved the survival rate of chicken infected with gentamicin-resistant Salmonella in vivo. Given that metabolite structures are conserved across species, fructose identified from bacteria could be used as a biomarker for breeding disease-resistant phenotypes in chicken. Therefore, a novel strategy is proposed for fighting against antibiotic-resistant S. enterica, including exploring molecules suppressed by antibiotics and providing a new approach to find pathogen targets for disease resistance in chicken breeding.


Subject(s)
Anti-Bacterial Agents , Salmonella enteritidis , Animals , Humans , Anti-Bacterial Agents/pharmacology , Gentamicins/pharmacology , NAD , Chickens/microbiology , Metabolomics , Adenosine Triphosphate
2.
Microbiol Spectr ; : e0479922, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36917000

ABSTRACT

Chickens have been used as a valuable and traditional model for studies on basic immunology. B lymphocytes were first identified in the bursa of Fabricius (BF) of broilers. The microbiota is important for immune system development and function. However, the effect of the microbiota on mediating B cell development and its regulatory mechanism is poorly elucidated. Here, we show that the gut microbiota is associated with the development of bursal B cells in young chickens. Changing patterns of both the alpha diversity and the expression of the B cell marker Bu-1α in the gut microbiota were related to the ages of chickens at different growth phases. Further correlation analysis revealed the marked correlation between the relative abundances of Intestinimonas, Bilophila, Parasutterella, Bacteroides, Helicobacter, Campylobacter, and Mucispirillum and the expression of Bu-1α. In antibiotic-treated chickens, BF and B cell development had aberrations as the relative abundance of the microbiota in early life decreased. These findings were consistent with Spearman's correlation results. Single-cell transcriptome analysis indicated that the heterogeneity in the cellular composition and developmental trajectory of bursal B cells from antibiotic-treated chickens was large. We found a novel subpopulation of unnamed B cells and identified Taf1 as a new pivotal regulator of B cell lineage differentiation. Therefore, we provide novel insights into the regulatory role of the gut microbiota in B cell development in early life and the maturation of host humoral immunity. IMPORTANCE In this study, we used young broilers to investigate the relationship between their gut microbiota and bursal B cell development. We characterized the important variables, microbes, B cells, and immunoglobulins during the posthatch development of birds. We also identified several candidate taxa in the cecal contents associated with B cells. Our study provides a rich resource and cell-cell cross talk model supporting B cell differentiation from the bursa in vitro at single-cell resolution. Furthermore, we determined a new pivotal regulator (Taf1) of B cell differentiation. We believe that our study makes a significant contribution to the literature because our findings may elucidate the role of the gut microbiota in B cell differentiation. This study also serves as a basis for developing new strategies that modulate B cell differentiation to prevent diseases.

3.
Genes (Basel) ; 14(3)2023 03 08.
Article in English | MEDLINE | ID: mdl-36980942

ABSTRACT

Carotenoid consumption decreases the risk of cancer, osteoporosis, or neurodegenerative diseases through interrupting the formation of free radicals. The deposition of carotenoids in chicken skin makes the skin color turn from white into yellow. The enzyme ß-carotene oxygenase 2 (BCO2) plays a key role during the degradation process of carotenoids in skin. How the BCO2 affects the skin color of the chicken and whether it is the key factor that results in the phenotypic difference between yellow- and white-skin chickens are still unclear. In this research, the measurement of the concentration of carotenoids in chicken skin by HPLC showed that the carotenoid concentration in chickens with a yellow skin was significantly higher than that in white-skin chickens. Moreover, there were significant differences in BCO2 gene expression in the back skin between yellow- and white-skin chickens. Scanning the SNPs in BCO2 gene revealed a G/A mutation in exon 6 of the BCO2 gene in white and yellow skin chicken. Generally, one SNP c.890A>G was found to be associated with the chicken skin color and may be used as a genetic marker in breeding for yellow skin in Chinese indigenous chickens.


Subject(s)
Chickens , Dioxygenases , Animals , Carotenoids/metabolism , Chickens/genetics , Chickens/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Mutation , Polymorphism, Single Nucleotide
4.
Poult Sci ; 102(3): 102298, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36638759

ABSTRACT

This study aimed to assess the effect of inbreeding on production traits using a long-term closed-line population recorded for residual feed intake (RFI). The study first used data from a previously reported population to determine the appropriate period of divergent selection for RFI. The results showed that RFI had similar moderate heritability estimates (0.28-0.34) during the fast-growing period (7-12 wk), and RFI at 7 to 10 wk had the highest heritability (0.34). Therefore, divergent selection was performed in a Chinese broiler population for RFI at 7 to 10 wk; the total sample size from generations zero (G0) to 13 was 9050. The divergence between the 2 lines increased steadily throughout generations, resulting in G13 with average RFI values of 304.55 in high RFI (HRFI) males, -160.31 in low RFI (LRFI) males, 296.30 in HRFI females and -157.55 in LRFI females. The feed intake (FI) and feed conversion ratio were almost higher in HRFI broilers than in LRFI broilers, and the magnitude of the difference in FI increased from approximately 4% for both sexes in G1 to approximately 33% in G13. Body weight gain was irregular from G1 to G13 and higher in LRFI broilers than in HRFI broilers after G10. Indeed, the HRFI broilers consumed more food, but they were lighter than LRFI broilers. In G13, LRFI males had heavier slaughter weight, longer cecum length, more white blood cells (WBC), red blood cells (RBC) and hemoglobin (HGB), but triglycerides, lower dressed percentage, percentage of half eviscerated yield, and eviscerated yield than HRFI males. LRFI females had a higher percentage of breast muscle and gizzard yield, longer cecum length, and more WBCs, RBCs and HGB but less abdominal fat and serum total cholesterol than HRFI females. This study was the first to verify that long-term divergent selection for RFI in Chinese broiler chickens is positive and beneficial.


Subject(s)
Chickens , Eating , Animals , Female , Male , Animal Feed/analysis , Cecum , Chickens/genetics , Phenotype
5.
Poult Sci ; 102(1): 102267, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36442306

ABSTRACT

The use of antibiotics leads to antibiotic residues in livestock and poultry products, adversely affecting human health. Ciprofloxacin (CFX) is a broad-spectrum antibiotic shared between animals and humans that is useful in treatments besides infections. However, changes in the gut microbiota caused by CFX and the possible link with the elimination of CFX residues have not been investigated. Herein, we used the Silkie chicken model to study the changes in the gut microbiota during the entire CFX-metabolic repertoire. We detected CFX residues in different tissues and showed that the elimination time of CFX from different tissues was dissimilar (liver > kidney > chest muscle > skin). Analysis of liver and kidney injury biomarkers and plasma antioxidant indices indicated slight hepatotoxicity and nephrotoxicity in the Silkie chickens. Importantly, the changes in the gut microbial community predominantly occurred early in the metabolic process. Correlation analysis revealed that the particular bacterial microbiota were associated with the pharmacokinetics of CFX in different Silkie chicken tissues (e.g., aerobic bacteria, including Escherichia and Coprococcus, and anaerobic bacteria, including Fusobacterium, Ruminococcus, Bifidobacterium, and Eubacterium). Collectively, certain microbiota may boost antibiotic metabolism and participate in restoring the microbial consortia after CFX is metabolized. Therefore, regulating the core intestinal microbiota may reduce foodborne antibiotics and accelerate the development of drug resistance.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Humans , Anti-Bacterial Agents , Ciprofloxacin , Chickens
6.
Front Genet ; 13: 820297, 2022.
Article in English | MEDLINE | ID: mdl-35299951

ABSTRACT

Hyperpigmentation of the visceral peritoneum (HVP) has been becoming one of the most challenging problems in yellow-feathered chicken production, which seriously affected chicken carcass quality traits. Detecting which genes dominantly impact pigmentation in the peritoneum tissues is of great benefit to the genetic improvement of HVP. To investigate the genetic mechanism of HVP in yellow-feathered broilers, genome-wide association studies (GWASs) were conducted in the F2 generation of a cross broiler population with 395 birds. A total of 115,706 single-nucleotide polymorphisms (SNPs) of 122,415 were retained to identify quantitative trait loci (QTL) associated to HVP in chicken. The GWAS results based on the logistic mixed model (LMM) revealed that a narrow genomic location on chromosomes 1 (49.2-51.3 Mb) was significantly associated (p ≤ 4.32 × 10-7) with HVP, which contained 23 SNP makers related to 14 functional genes (MFNG, POLDIP3, POLR2F, PICK1, PDXP, SGSM3, RANGAP1, MYH9, RPL3, GALP3, LGALS1, MICALL1, ATF4, and CYP2D6). Four highly associated (p < 10-5) haplotype blocks of 0.80 kb (two SNPs), 0.06 kb (two SNPs), 0.95 kb (two SNPs), and 0.03 kb (two SNPs) were identified with two, two, four, and four distinct haplotypes, respectively. As a melanoma-associated gene, CYP2D6 were also possibly involved in the development of HVP occurring in chicken with two significant variations (rs314284996 and rs317955795) in the promoter regions. Further tests revealed that the expression of CYP2D6 was obviously higher in the visceral peritoneum tissue of chicken with HVP than that in the normal group (p < 0.05). Our results provide a novel clue to understand the genetic mechanism of HVP generation in chicken, and the mapped QTL or candidate genes might serve for genomic selection to improve carcass quality in the yellow-feathered chicken industry.

7.
Heredity (Edinb) ; 128(3): 154-158, 2022 03.
Article in English | MEDLINE | ID: mdl-35132207

ABSTRACT

The dominance effect is considered to be a key factor affecting complex traits. However, previous studies have shown that the improvement of the model, including the dominance effect, is usually less than 1%. This study proposes a novel genomic prediction method called CADM, which combines additive and dominance genetic effects through locus-specific weights on heterozygous genotypes. To the best of our knowledge, this is the first study of weighting dominance effects for genomic prediction. This method was applied to the analysis of chicken (511 birds) and pig (3534 animals) datasets. A 5-fold cross-validation method was used to evaluate the genomic predictive ability. The CADM model was compared with typical models considering additive and dominance genetic effects (ADM) and the model considering only additive genetic effects (AM). Based on the chicken data, using the CADM model, the genomic predictive abilities were improved for all three traits (body weight at 12th week, eviscerating percentage, and breast muscle percentage), and the average improvement in prediction accuracy was 27.1% compared with the AM model, while the ADM model was not better than the AM model. Based on the pig data, the CADM model increased the genomic predictive ability for all the three pig traits (trait names are masked, here designated as T1, T2, and T3), with an average increase of 26.3%, and the ADM model did not improve, or even slightly decreased, compared with the AM model. The results indicate that dominant genetic variation is one of the important sources of phenotypic variation, and the novel prediction model significantly improves the accuracy of genomic prediction.


Subject(s)
Models, Genetic , Polymorphism, Single Nucleotide , Animals , Genome , Genomics/methods , Genotype , Heterozygote , Phenotype , Swine/genetics
8.
Avian Dis ; 65(3): 493-499, 2021 09.
Article in English | MEDLINE | ID: mdl-34699148

ABSTRACT

Coccidiosis is a major intestinal disease affecting broiler chickens. Tributyrin (TB) is a valid alternative to butyrate acid, which was associated with the improvement of performance and attenuation of intestinal inflammation in animal production. However, there are few reports on TB as a prophylactic treatment against coccidiosis in broilers. The aim of the study was to investigate the effects of TB supplementation on performance and intestinal health of broiler chickens post coccidiosis vaccination with a mixed-species Eimeria. In the first experiment, 612 broiler chicks were randomly assigned to two treatments with six replicates. Treatments included no TB supplementation and coccidiosis vaccination (CV1), or TB supplementation (400 mg/kg) and coccidiosis vaccination (TBCV1). On day 5, all broilers received a single vaccine dose. Performance, intestinal histopathology, clinical severity, and fecal oocyst counts were evaluated from day 1 to day 63. TB supplementation resulted in a nonsignificant effect on body weight gain (BWG), feed intake (FI), and mortality-corrected feed conversion ratio (FCR), except in increased FI on days 22-42 (P < 0.05). The TBCV1 group had increased (P < 0.05) villi heights in the duodenum and increased (P < 0.05) villi widths in the ileum on day 63 of age and reduced oocyst shedding on days 19-26 compared to CV1(P < 0.05). The route of administration in the second experiment was different from the first experiment in which the seeder birds (half of birds from each pen) received a tenfold dose on day 5. TB supplementation in broilers resulted in increased (P < 0.05) BWG and reduced (P < 0.05) FCR on days 22-42, and increased (P < 0.05) villi heights in the duodenum and increased (P < 0.05) villi widths in the ileum on day 63 of age, as well as a lower frequency (P < 0.05) of intestinal hemorrhage on days 13-62 and reduced (P < 0.001) oocyst shedding on day 5 post-Eimeria challenge. In conclusion, the study demonstrated that TB can be considered as a feed additive for protecting broilers from coccidiosis on days 22-42.


Impacto de la tributirina en el rendimiento y la salud intestinal de pollos de engorde después de la vacunación contra la coccidiosis. La coccidiosis es una enfermedad intestinal importante que afecta al pollo de engorde. La tributirina (TB) es una alternativa viable para el ácido butirato, que se ha asociado con mejora en el rendimiento y atenuación de la inflamación intestinal en la producción animal. Sin embargo, hay pocos informes sobre la tributirina como tratamiento profiláctico contra la coccidiosis en pollos de engorde. El objetivo del estudio fue investigar los efectos de la suplementación de tributirina en el rendimiento y la salud intestinal de pollos de engorde después de la vacunación contra coccidiosis con especies mixtas de Eimeria. En el primer experimento, se asignaron aleatoriamente 612 pollos de engorde en dos tratamientos con seis repeticiones. Los tratamientos incluyeron no suplementación con tributirina y vacunación contra coccidiosis (CV1), o suplementación con tributirina (400 mg/kg) y vacunación contra coccidiosis (TBCV1). En el quinto día de edad, todos los pollos de engorde recibieron una sola dosis de vacuna. El rendimiento, la histopatología intestinal, la severidad clínica y los recuentos de oocistos fecales se evaluaron desde el día primer hasta el día 63. La suplementación con tributirina resultó en un efecto no significativo sobre la ganancia de peso corporal (BWG), en el consume de alimento (FI) y la tasa de conversión alimenticia corregida por la mortalidad (FCR), excepto en un aumento en el consumo de alimento entre los días 22 a 42 (P <0.05). El grupo TBCV1 mostró aumento (P <0.05) de la altura de las vellosidades en el duodeno y aumento (P <0.05) del ancho de las vellosidades en el íleon en el día 63 de edad y reducción de la eliminación de ooquistes entre los días 19-26 en comparación con el tratamiento CV1 (P <0.05). La vía de administración en el segundo experimento fue diferente del primer experimento en el que aves sembradoras (la mitad de las aves de cada corral) recibieron una dosis diez veces mayor en el quinto día. La suplementación de tributirina en pollos de engorde resultó en un aumento (P <0.05) sobre la ganancia de peso corporal y una reducción (P <0.05) en la tasa de conversión alimenticia corregida por la mortalidad entre los días 22-42, aumento (P <0.05) de la altura de las vellosidades en el duodeno y aumento (P <0.05) en el ancho de las vellosidades en el íleon en el día 63 de edad, así como una frecuencia más baja (P <0.05) de hemorragia intestinal entre los días 13 a 62 y reducción (P <0.001) de la eliminación de oocistos en el quinto después de la exposición a Eimeria. En conclusión, el estudio demostró que la tributirina podría considerarse como un aditivo alimentario para proteger a los pollos de engorde de la coccidiosis entre los días 22 a 42.


Subject(s)
Coccidiosis , Poultry Diseases , Vaccines , Animal Feed/analysis , Animals , Chickens , Coccidiosis/prevention & control , Coccidiosis/veterinary , Diet/veterinary , Dietary Supplements , Poultry Diseases/prevention & control , Triglycerides , Vaccination/veterinary
9.
Front Immunol ; 12: 700603, 2021.
Article in English | MEDLINE | ID: mdl-34566959

ABSTRACT

Increasing studies show that gut microbiota play a central role in immunity, although the impact of the microbiota on mediation of thymic T cells throughout life is not well understood. Chickens have been shown to be a valuable model for studying basic immunology. Here, we show that changes in the gut microbiota are associated with the development of thymic T cells in young chickens. Our results showed that T-cell numbers in newborn chicks sharply increased from day 0 and peaked at day 49. Interestingly, the α-diversity score pattern of change in gut microbiota also increased after day 0 and continued to increase until day 49. We found that early antibiotic treatment resulted in a dramatic reduction in gut alpha diversity: principal component analysis (PCA) showed that antibiotic treatment resulted in a different cluster from the controls on days 9 and 49. In the antibiotic-treated chickens, we identified eight significantly different (p < 0.05) microbes at the phylum level and 14 significantly different (p < 0.05) microbes at the genus level, compared with the controls. Importantly, we found that antibiotic treatment led to a decreased percentage and number of T cells in the thymus when measured at days 9 and 49, as evaluated by flow cytometry. Collectively, our data suggest that intestinal microbiota may be involved in the regulation of T cells in birds, presenting the possibility that interventions that actively modify the gut microbiota in early life may accelerate the maturation of humoral immunity, with resulting anti-inflammatory effects against different pathogens.


Subject(s)
Gastrointestinal Microbiome/immunology , T-Lymphocytes/immunology , Thymus Gland/growth & development , Thymus Gland/immunology , Animals , Chickens
10.
BMC Genomics ; 22(1): 487, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34193033

ABSTRACT

BACKGROUND: During domestication, remarkable changes in behavior, morphology, physiology and production performance have taken place in farm animals. As one of the most economically important poultry, goose owns a unique appearance characteristic called knob, which is located at the base of the upper bill. However, neither the histomorphology nor the genetic mechanism of the knob phenotype has been revealed in geese. RESULTS: In the present study, integrated radiographic, histological, transcriptomic and genomic analyses revealed the histomorphological characteristics and genetic mechanism of goose knob. The knob skin was developed, and radiographic results demonstrated that the knob bone was obviously protuberant and pneumatized. Histologically, there were major differences in structures in both the knob skin and bone between geese owing knob (namely knob-geese) and those devoid of knob (namely non-knob geese). Through transcriptome analysis, 592 and 952 genes differentially expressed in knob skin and bone, and significantly enriched in PPAR and Calcium pathways in knob skin and bone, respectively, which revealed the molecular mechanisms of histomorphological differences of the knob between knob- and non-knob geese. Furthermore, integrated transcriptomic and genomic analysis contributed to the identification of 17 and 21 candidate genes associated with the knob formation in the skin and bone, respectively. Of them, DIO2 gene could play a pivotal role in determining the knob phenotype in geese. Because a non-synonymous mutation (c.642,923 G > A, P265L) changed DIO2 protein secondary structure in knob geese, and Sanger sequencing further showed that the AA genotype was identified in the population of knob geese, and was prevalent in a crossing population which was artificially selected for 10 generations. CONCLUSIONS: This study was the first to uncover the knob histomorphological characteristics and genetic mechanism in geese, and DIO2 was identified as the crucial gene associated with the knob phenotype. These data not only expand and enrich our knowledge on the molecular mechanisms underlying the formation of head appendages in both mammalian and avian species, but also have important theoretical and practical significance for goose breeding.


Subject(s)
Geese , Transcriptome , Animals , Forehead , Geese/genetics , Gene Expression Profiling , Genome
11.
Genes (Basel) ; 12(2)2021 02 10.
Article in English | MEDLINE | ID: mdl-33578825

ABSTRACT

Exposure to high ambient temperature has detrimental effects on poultry welfare and production. Although changes in gene expression due to heat exposure have been well described for broiler chickens, knowledge of the effects of heat on laying hens is still relatively limited. In this study, we profiled the transcriptome for pectoralis major muscle (n = 24) and liver (n = 24), during a 4-week cyclic heating experiment performed on layers in the early phase of egg production. Both heat-control and time-based contrasts were analyzed to determine differentially expressed genes (DEGs). Heat exposure induced different changes in gene expression for the two tissues, and we also observed changes in gene expression over time in the control animals suggesting that metabolic changes occurred during the transition from onset of lay to peak egg production. A total of 73 DEGs in liver were shared between the 3 h heat-control contrast, and the 4-week versus 3 h time contrast in the control group, suggesting a core set of genes that is responsible for maintenance of metabolic homeostasis regardless of the physiologic stressor (heat or commencing egg production). The identified DEGs improve our understanding of the layer's response to stressors and may serve as targets for genetic selection in the future to improve resilience.


Subject(s)
Avian Proteins/genetics , Liver/metabolism , Pectoralis Muscles/metabolism , Reproduction/genetics , Transcriptome , Adaptation, Physiological/genetics , Animals , Avian Proteins/classification , Avian Proteins/metabolism , Chickens , Female , Gene Expression Profiling , Gene Expression Regulation , Hot Temperature , Zygote/metabolism
12.
Front Genet ; 11: 894, 2020.
Article in English | MEDLINE | ID: mdl-33033489

ABSTRACT

The advanced intercross line (AIL) that is created by successive generations of pseudo-random mating after the F2 generation is a valuable resource, especially in agricultural livestock and poultry species, because it improves the precision of quantitative trait loci (QTL) mapping compared with traditional association populations by introducing more recombination events. The growth traits of broilers have significant economic value in the chicken industry, and many QTLs affecting growth traits have been identified, especially on chromosomes 1, 4, and 27, albeit with large confidence intervals that potentially contain dozens of genes. To promote a better understanding of the underlying genetic architecture of growth trait differences, specifically body weight and bone development, in this study, we report a nine-generation AIL derived from two divergent outbred lines: High Quality chicken Line A (HQLA) and Huiyang Bearded (HB) chicken. We evaluate the genetic architecture of the F0, F2, F8, and F9 generations of AIL and demonstrate that the population of the F9 generation sufficiently randomized the founder genomes and has the characteristics of rapid linkage disequilibrium decay, limited allele frequency decline, and abundant nucleotide diversity. This AIL yielded a much narrower QTL than the F2 generations, especially the QTL on chromosome 27, which was reduced to 120 Kb. An ancestral haplotype association analysis showed that most of the dominant haplotypes are inherited from HQLA but with fluctuation of the effects between them. We highlight the important role of four candidate genes (PHOSPHO1, IGF2BP1, ZNF652, and GIP) in bone growth. We also retrieved a missing QTL from AIL on chromosome 4 by identifying the founder selection signatures, which are explained by the loss of association power that results from rare alleles. Our study provides a reasonable resource for detecting quantitative trait genes and tracking ancestor history and will facilitate our understanding of the genetic mechanisms underlying chicken bone growth.

13.
Sci Rep ; 10(1): 14532, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32883984

ABSTRACT

Gamecock chickens are one of the earliest recorded birds in China, and have accumulated some unique morphological and behavioral signatures such as large body size, muscularity and aggressive behavior, whereby being excellent breeding materials and a good model for studying bird muscular development and behavior. In this study, we sequenced 126 chicken genomes from 19 populations, including four commercial chicken breeds that are commonly farmed in China, 13 nationwide Chinese typical indigenous chicken breeds (including two Chinese gamecock breeds), one red jungle fowl from Guangxi Province of China and three gamecock chickens from Laos. Combined with 31 published chicken genomes from three populations, a comparative genomics analysis was performed across 157 chickens. We found a severe confounding effect on potential cold adaptation exerted by introgression from commercial chickens into Chinese indigenous chickens, and argued that the genetic introgression from commercial chickens into indigenous chickens should be seriously considered for identifying selection footprint in indigenous chickens. LX gamecock chickens might have played a core role in recent breeding and conservation of other Chinese gamecock chickens. Importantly, AGMO (Alkylglycerol monooxygenase) and CPZ (Carboxypeptidase Z) might be crucial for determining the behavioral pattern of gamecock chickens, while ISPD (Isoprenoid synthase domain containing) might be essential for the muscularity of gamecock chickens. Our results can further the understanding of the evolution of Chinese gamecock chickens, especially the genetic basis of gamecock chickens revealed here was valuable for us to better understand the mechanisms underlying the behavioral pattern and the muscular development in chicken.


Subject(s)
Genome/physiology , Polymorphism, Single Nucleotide/genetics , Animals , Chickens , China , Genetic Variation/genetics , Genetic Variation/physiology , Genome/genetics , Phylogeny
14.
Commun Biol ; 3(1): 472, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859973

ABSTRACT

In depth studies of quantitative trait loci (QTL) can provide insights to the genetic architectures of complex traits. A major effect QTL at the distal end of chicken chromosome 1 has been associated with growth traits in multiple populations. This locus was fine-mapped in a fifteen-generation chicken advanced intercross population including 1119 birds and explored in further detail using 222 sequenced genomes from 10 high/low body weight chicken stocks. We detected this QTL that, in total, contributed 14.4% of the genetic variance for growth. Further, nine mosaic precise intervals (Kb level) which contain ancestral regulatory variants were fine-mapped and we chose one of them to demonstrate the key regulatory role in the duodenum. This is the first study to break down the detail genetic architectures for the well-known QTL in chicken and provides a good example of the fine-mapping of various of quantitative traits in any species.


Subject(s)
Chickens/growth & development , Chickens/genetics , Haplotypes , Mutation , Quantitative Trait Loci , Quantitative Trait, Heritable , Animals , Crosses, Genetic , Gene Expression Regulation , Genetic Association Studies , Genome-Wide Association Study , Organ Specificity/genetics , Phenotype , Polymorphism, Single Nucleotide
15.
Poult Sci ; 99(8): 4044-4051, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32731992

ABSTRACT

Intestinal microbiota is a critical determinant of growth and risk of metabolic diseases. Our previous studies showed that the locus rs16775833 within the DMRT1 gene is significantly associated with variation in the population structure of the gut microbiota, which is involved in determining the BW of the chicken. To assess the accuracy of correlation of rs16775833 located in the DMRT1 gene on microbial population and BW in birds, 2 genotypes GG and TT in the rs16775833 were identified in Chinese Yellow broiler breeders. We found that BW in the TT genotype group was significantly higher than in the GG genotype group at 7 and 13 wk of age in 777 female chickens. A full-length 16S rRNA sequencing approach was used to further evaluate the fecal bacterial composition of female broilers in 11 TT genotype chickens with high weight (HW-TT) and 11 GG genotype chickens with low weight (LW-GG) at 91 D of age. Partial least squares discriminant analysis revealed that the microbiota of the HW-TT and LW-GG females were clearly separated into 2 clusters. Furthermore, we identified 13 significantly different (P < 0.05) microbes at the genus level and 17 significantly different (P < 0.05) species between the HW-TT and LW-GG groups. Our data show that rs16775833 can modulate the microbial community structure and is associated with the BW of birds. To our knowledge, this is the first time that DMRT1 has been identified as a specific host factor, which is not only involved in sex determination but also has an effect on microbial function that might regulate animal growth.


Subject(s)
Body Weight , Chickens , Gastrointestinal Microbiome , Transcription Factors , Animals , Body Weight/genetics , Chickens/genetics , Chickens/microbiology , Female , Gastrointestinal Microbiome/genetics , Genotype , RNA, Ribosomal, 16S/genetics , Transcription Factors/genetics
16.
Anim Genet ; 51(5): 741-751, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32720725

ABSTRACT

The chicken gizzard is the primary digestive and absorptive organ regulating food intake and metabolism. Body weight is a typical complex trait regulated by an interactive polygene network which is under the control of an interacting network of polygenes. To simplify these genotype-phenotype associations, the gizzard is a suitable target organ to preliminarily explore the mechanism underlying the regulation of chicken growth through controlled food intake. This study aimed to identify key food intake-related genes through combinatorial GWAS and transcriptome analysis. We performed GWAS of body weight in an F2 intercrossed population and transcriptional profiling analysis of gizzards from chickens with different body weight. We identified a major 10 Mb quantitative trait locus (QTL) on chromosome 1 and numerous minor QTL distributed among 24 chromosomes. Combining data regarding QTL and gizzard gene expression, two hub genes, MLNR and HTR2A, and a list of core genes with small effect were found to be associated with food intake. Furthermore, the neuroactive ligand-receptor interaction pathway was found to play a key role in regulating the appetite of chickens. The present results show the major-minor gene interactions in metabolic pathways and provide insights into the genetic architecture and gene regulation during food intake in chickens.


Subject(s)
Body Weight/genetics , Chickens/physiology , Eating/genetics , Gizzard, Avian/metabolism , Quantitative Trait Loci , Animals , Chickens/genetics , Chickens/growth & development , Gene Expression Profiling/veterinary , Genome-Wide Association Study/veterinary , RNA-Seq/veterinary
17.
Front Genet ; 11: 108, 2020.
Article in English | MEDLINE | ID: mdl-32174971

ABSTRACT

The choice of a genetic marker genotyping platform is important for genomic prediction in livestock and poultry. High-throughput sequencing can produce more genetic markers, but the genotype quality is lower than that obtained with single nucleotide polymorphism (SNP) chips. The aim of this study was to compare the accuracy of genomic prediction between high-throughput sequencing and SNP chips in broilers. In this study, we developed a new SNP marker screening method, the pre-marker-selection (PMS) method, to determine whether an SNP marker can be used for genomic prediction. We also compared a method which preselection marker based results from genome-wide association studies (GWAS). With the two methods, we analysed body weight at the12th week (BW) and feed conversion ratio (FCR) in a local broiler population. A total of 395 birds were selected from the F2 generation of the population, and 10X specific-locus amplified fragment sequencing (SLAF-seq) and the Illumina Chicken 60K SNP Beadchip were used for genotyping. The genomic best linear unbiased prediction method (GBLUP) was used to predict the genomic breeding values. The accuracy of genomic prediction was validated by the leave-one-out cross-validation method. Without SNP marker screening, the accuracies of the genomic estimated breeding value (GEBV) of BW and FCR were 0.509 and 0.249, respectively, when using SLAF-seq, and the accuracies were 0.516 and 0.232, respectively, when using the SNP chip. With SNP marker screening by the PMS method, the accuracies of GEBV of the two traits were 0.671 and 0.499, respectively, when using SLAF-seq, and 0.605 and 0.422, respectively, when using the SNP chip. Our SNP marker screening method led to an increase of prediction accuracy by 0.089-0.250. With SNP marker screening by the GWAS method, the accuracies of genomic prediction for the two traits were also improved, but the gains of accuracy were less than the gains with PMS method for all traits. The results from this study indicate that our PMS method can improve the accuracy of GEBV, and that more accurate genomic prediction can be obtained from an increased number of genomic markers when using high-throughput sequencing in local broiler populations. Due to its lower genotyping cost, high-throughput sequencing could be a good alternative to SNP chips for genomic prediction in breeding programmes of local broiler populations.

18.
Animals (Basel) ; 9(4)2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31013730

ABSTRACT

To investigate culling patterns during the breeding cycle and lifetime production associated with culling reasons, 19,471 culling records were collected in southwest China. Lifetime pigs born alive (LPBA) and parity for culling reasons, and reason distribution at different parities and breeding cycle were analyzed. Sows culled for stress and death (SD), lameness (LA), common disease (CD), not being pregnant, return to estrus, and abortion (NP) had fewer than 20 LPBA (p < 0.05). Gilts were mainly culled for anestrus beyond nine months (AB9), CD, and LA, while weaned sows were culled for reproductive system disease (RS), CD, and anestrus beyond seven days (p < 0.0033). Gestating sows were mainly culled for NP, CD, and SD, while lactating sows were mainly culled for low or no milk production (NM), poor litter size, and CD (p < 0.0033). Moreover, sows were mainly culled at parity 0, 1, and 2 (p < 0.0024). Besides CD and RS, LA and NP were the primary reasons for parity 1 and 2 culls, respectively. In conclusion, SD, LA, CD, and NP sharply decrease sow lifetime production. AB9, RS, NP, and NM mainly occurred in gilts, weaned, gestating, and lactating sows, respectively. Low parity sows had a higher risk of CD, RS, LA, and NP.

19.
ACS Omega ; 4(1): 2331-2336, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30775649

ABSTRACT

Methionine (Met) is an essential and multifunctional nutrient in vertebrate diets. It is a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation, which has an important role in the inflammatory responses. However, whether Met exerts anti-inflammatory effects by altering DNA methylation in macrophages is unclear. In this study, Met was found to diminish the activation of the mitogen-activated protein kinase signaling pathway; decrease the production of tumor necrosis factor-α, interleukin-6, and interferon-ß; and enhance the levels of intracellular SAM after lipopolysaccharide (LPS) treatment in macrophages. Similarly, SAM inhibited the LPS-induced inflammatory response, consistent with the result of Met treatment. Met-treated macrophages displayed increased global DNA methylation. The DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine partially blocked the anti-inflammatory effects of Met in macrophages, suggesting a mechanism involving DNA methylation. Collectively, the results indicated that Met inhibits the LPS-induced inflammatory response by altering DNA methylation in RAW 264.7 macrophages. The findings provide new insights into the interplay between nutrition and immunology, and highlight the regulatory effects of amino acids on the host immune system.

20.
J Virol ; 92(8)2018 04 15.
Article in English | MEDLINE | ID: mdl-29263268

ABSTRACT

The group of highly related avian leukosis viruses (ALVs) in chickens are thought to have evolved from a common retroviral ancestor into six subgroups, A to E and J. These ALV subgroups use diverse cellular proteins encoded by four genetic loci in chickens as receptors to gain entry into host cells. Hosts exposed to ALVs might be under selective pressure to develop resistance to ALV infection. Indeed, resistance alleles have previously been identified in all four receptor loci in chickens. The tvb gene encodes a receptor, which determines the susceptibility of host cells to ALV subgroup B (ALV-B), ALV-D, and ALV-E. Here we describe the identification of two novel alleles of the tvb receptor gene, which possess independent insertions each within exon 4. The insertions resulted in frameshift mutations that reveal a premature stop codon that causes nonsense-mediated decay of the mutant mRNA and the production of truncated Tvb protein. As a result, we observed that the frameshift mutations in the tvb gene significantly lower the binding affinity of the truncated Tvb receptors for the ALV-B, ALV-D, and ALV-E envelope glycoproteins and significantly reduce susceptibility to infection by ALV-B, ALV-D and ALV-E in vitro and in vivo Taken together, these findings suggest that frameshift mutation can be a molecular mechanism of reducing susceptibility to ALV and enhance our understanding of virus-host coevolution.IMPORTANCE Avian leukosis virus (ALV) once caused devastating economic loss to the U.S. poultry industry prior the current eradication schemes in place, and it continues to cause severe calamity to the poultry industry in China and Southeast Asia, where deployment of a complete eradication scheme remains a challenge. The tvb gene encodes the cellular receptor necessary for subgroup B, D, and E ALV infection. Two tvb allelic variants that resulted from frameshift mutations have been identified in this study, which have been shown to have significantly reduced functionality in mediating subgroup B, D, and E ALV infection. Unlike the control of herpesvirus-induced diseases by vaccination, the control of avian leukosis in chickens has relied totally on virus eradication measures and host genetic resistance. This finding enriches the allelic pool of the tvb gene and expands the potential for genetic improvement of ALV resistance in varied chicken populations by selection.


Subject(s)
Avian Leukosis Virus/metabolism , Avian Leukosis , Avian Proteins , Chickens , Frameshift Mutation , Genetic Predisposition to Disease , Receptors, Virus , Animals , Avian Leukosis/genetics , Avian Leukosis/metabolism , Avian Leukosis Virus/genetics , Avian Proteins/genetics , Avian Proteins/metabolism , Cell Line , Chickens/genetics , Chickens/metabolism , Chickens/virology , Receptors, Virus/genetics , Receptors, Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...