Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 892
Filter
1.
Int J Clin Exp Pathol ; 17(4): 121-136, 2024.
Article in English | MEDLINE | ID: mdl-38716350

ABSTRACT

Yang-deficiency constitution (YADC) is linked to a higher vulnerability to various diseases, such as cold coagulation and blood stasis (CCBS) syndrome and infertility. Endometrial hyperplastic processes (EHPs) are a leading cause of infertility in women and are characterized by CCBS. However, it remains unclear whether YADC is related to the development of EHPs. METHODS: We recruited 202 EHPs patients including 147 with YADC (YEH group) and 55 with non-YADC (NYEH group). Fecal samples were collected from 8 YEH patients and 3 NYEH patients and analyzed using 16S rRNA V3-V4 sequencing for gut microbiota analysis. We obtained constitution survey data and a differential gut microbiota dataset from the literature for further analysis. Bioinformatics analysis was conducted using gut microbiota-related genes from public databases. RESULTS: YADC was significantly more prevalent in EHPs than non-YADC (P < 0.001), suggesting it as a potential risk factor for EHPs occurrence (ORpopulation survey = 13.471; ORhealthy women = 5.173). The YEH group had higher levels of inflammation, estrogen, and tamoxifen-related flora compared to NYEH and healthy YADC groups. There was an interaction between inflammation, estrogen, differential flora, and EHPs-related genes, particularly the TNF gene (related to inflammation) and the EGFR gene (related to estrogen), which may play a crucial role in EHPs development. CONCLUSION: YEH individuals exhibit significant changes in their gut microbiota compared to NYEH and healthy YADC. The interaction between specific microbiota and host genes is believed to play a critical role in the progression of EHPs.

2.
Sci Total Environ ; 934: 173313, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38761952

ABSTRACT

Taiwan, identified as pivotal in the Asian drug trafficking chain, has been experiencing a surge in illicit drug-related issues. Wastewater-based epidemiology (WBE) has emerged as a promising approach for comprehensive evaluation of actual illicit drug usage. This study presents the first WBE investigation of illicit drug consumption in Taiwan based on the analysis of wastewater from four wastewater treatment plants (WWTPs) in the Taipei metropolitan area. Additionally, it demonstrates a high correlation between the amounts of illicit drugs seized and influent concentrations over an extended period of time. The reliability of solid-phase extraction and analysis via high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was validated for 16 illicit drugs (methamphetamine, ketamine, cocaine, codeine, methadone, morphine, meperidine, fentanyl, sufentanil, para-methoxyamphetamine (PMA), para-methoxymethamphetamine (PMMA), 3,4-methylenedioxymethamphetamine (MDMA), cathinone, methcathinone, mephedrone (MEPH), and 4-methylethcathinone (4-MEC)). Methamphetamine, ketamine, and 4-MEC were consistently detected in all wastewater samples, underscoring their prevalence in the Taipei metropolitan area. Biochemical oxygen demand (BOD) and ammonia nitrogen (ammonia N) were employed to reduce uncertainty in estimations of population size during back-calculation of illicit drug consumption. The results indicate that methamphetamine was the most consumed drug (175-740 mg day-1 1000 people-1), followed by ketamine (22-280 mg day-1 1000 people-1). In addition, urban-related WWTPs exhibited higher consumption of methamphetamine and ketamine than did the suburban-related WWTP, indicating distinct illicit drug usage patterns between suburban and urban regions. Moreover, an examination of temporal trends in wastewater from the Dihua WWTP revealed a persistent predominance of ketamine and methamphetamine, consistent with statistical data pertaining to seizure quantities and urine test results. The study provides encouraging insight into spatial and temporal variations in illicit drug usage in the Taipei metropolitan area, emphasizing the complementary role of WBE in understanding trends in illicit drug abuse.

3.
J Colloid Interface Sci ; 669: 637-646, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38733875

ABSTRACT

Polyaniline (PANI) has been widely used as a cathode in aqueous zinc-ion batteries (AZIBs) because of its attractive conductivity and energy storage capability. However, the extensive application of PANI is limited by spontaneous deprotonation and slow diffusion kinetics. Herein, an 18-crown-6-functionalised PANI pseudorotaxane (18C6@PANI) cathode is successfully developed through a facile template-directed polymerisation reaction. The 18C6@PANI cathode exhibits a high specific capacity of 256 mAh g-1 at 0.2 A/g, excellent rate performance of 134 mAh g-1 at 6 A/g and outstanding cycle stability at a high current density of 3 A/g over 10,000 cycles. Experimental and theoretical analyses demonstrate the formation of the -N-Zn-O- structure. The abundant supramolecular channels in pseudorotaxane, induced by crown ether functional groups, are beneficial for achieving superior cyclability and rate capability. These encouraging results highlight the potential for designing more efficient PANI-based cathodes for high-performance AZIBs.

4.
Nat Commun ; 15(1): 4460, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796517

ABSTRACT

In plants, the plant-specific RNA polymerase V (Pol V) transcripts non-coding RNAs and provides a docking platform for the association of accessory proteins in the RNA-directed DNA methylation (RdDM) pathway. Various components have been uncovered that are involved in the process of DNA methylation, but it is still not clear how the transcription of Pol V is regulated. Here, we report that the conserved RNA polymerase II (Pol II) elongator, SPT6L, binds to thousands of intergenic regions in a Pol II-independent manner. The intergenic enrichment of SPT6L, interestingly, co-occupies with the largest subunit of Pol V (NRPE1) and mutation of SPT6L leads to the reduction of DNA methylation but not Pol V enrichment. Furthermore, the association of SPT6L at Pol V loci is dependent on the Pol V associated factor, SPT5L, rather than the presence of Pol V, and the interaction between SPT6L and NRPE1 is compromised in spt5l. Finally, Pol V RIP-seq reveals that SPT6L is required to maintain the amount and length of Pol V transcripts. Our findings thus uncover the critical role of a Pol II conserved elongator in Pol V mediated DNA methylation and transcription, and shed light on the mutual regulation between Pol V and II in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Methylation , DNA-Directed RNA Polymerases , Gene Expression Regulation, Plant , RNA Polymerase II , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Transcription, Genetic , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/genetics , Mutation , RNA, Plant/metabolism , RNA, Plant/genetics
5.
Yi Chuan ; 46(3): 256-262, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38632103

ABSTRACT

Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor that is crucial for the regulation to maintain the function of pancreatic ß-cell, hepatic lipid metabolism, and other processes. Mature-onset diabetes of the young type 3 is a monogenic form of diabetes caused by HNF1α mutations. Although several mutation sites have been reported, the specific mechanisms remain unclear, such hot-spot mutation as the P291fsinsC mutation and the P112L mutation and so on. In preliminary studies, we discovered one MODY3 patient carrying a mutation at the c.493T>C locus of the HNF1α gene. In this study, we analyzed the pathogenic of the mutation sites by using the Mutation Surveyor software and constructed the eukaryotic expression plasmids of the wild-type and mutant type of HNF1α to detect variations in the expression levels and stability of HNF1α protein by using Western blot. The analyses of the Mutation Surveyor software showed that the c.493T>C site mutation may be pathogenic gene and the results of Western blot showed that both the amount and stability of HNF1α protein expressed by the mutation type plasmid were reduced significantly compared to those by the wild type plasmid (P<0.05). This study suggests that the c.493T>C (p.Trp165Arg) mutation dramatically impacts HNF1α expression, which might be responsible for the development of the disease and offers fresh perspectives for the following in-depth exploration of MODY3's molecular pathogenic process.


Subject(s)
Diabetes Mellitus, Type 2 , Hepatocyte Nuclear Factor 1-alpha , Insulin-Secreting Cells , Humans , Diabetes Mellitus, Type 2/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Insulin-Secreting Cells/metabolism , Mutation
6.
World J Clin Cases ; 12(8): 1454-1460, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38576808

ABSTRACT

BACKGROUND: A rare autosomal recessive genetic disorder, 3M syndrome, is characterized by severe intrauterine and postnatal growth retardation. Children with 3M syndrome typically exhibit short stature, facial deformities, long tubular bones, and high vertebral bodies but generally lack mental abnormalities or other organ damage. Pathogenic genes associated with 3M syndrome include CUL7, OBSL1 and CCDC8. The clinical and molecular characteristics of patient with 3M syndrome are unique and serve as important diagnostic indicators. CASE SUMMARY: In this case, the patient displayed square shoulders, scoliosis, long slender tubular bones, and normal neurological development. Notably, the patient did not exhibit the typical dysmorphic facial features, relative macrocephaly, or growth retardation commonly observed in individuals with 3M syndrome. Whole exon sequencing revealed a novel heterozygous c.56681+1G>C (Splice-3) variant and a previously reported nonsense heterozygous c.3341G>A (p.Trp1114Ter) variant of OBSL1. Therefore, it is important to note that the clinical features of 3M syndrome may not always be observable, and genetic confirmation is often required. Additionally, the identification of the c.5683+1G>C variant in OBSL1 is noteworthy because it has not been previously reported in public databases. CONCLUSION: Our study identified a new variant (c.5683+1G>C) of OBSL1 that contributes to expanding the molecular profile of 3M syndrome.

7.
Sheng Li Xue Bao ; 76(2): 224-232, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658372

ABSTRACT

The present study aims to investigate the production of ketone body in the liver of mice after 6 weeks of high-intensity interval training (HIIT) intervention and explore the possible mechanisms. Male C57BL/6J mice (7-week-old) were randomly divided into control and HIIT groups. The control group did not engage in exercise, while the HIIT group underwent a 6-week HIIT (10° slope treadmill exercise). Changes in weight and body composition were recorded, and blood ketone body levels were measured before, immediately after, and 1 h after each HIIT exercise. After 6-week HIIT, the levels of free fatty acids in the liver and serum were detected using reagent kits, and expression levels of regulatory factors and key enzymes of ketone body production in the mouse liver were detected by Western blot and qPCR. The results showed that, the blood ketone body levels in the HIIT group significantly increased immediately after a single HIIT and 1 h after HIIT, compared with that before HIIT. The body weight of the control group gradually increased within 6 weeks, while the HIIT group mice did not show significant weight gain. After 6-week HIIT, compared with the control group, the HIIT group showed decreased body fat ratio, increased lean body weight ratio, and increased free fatty acid levels in liver and serum. Liver carnitine palmitoyl transferase-I (CPT-I), peroxisome proliferator activated receptor α (PPARα), and fibroblast growth factor 21 (FGF21) protein expression levels were up-regulated, whereas mammalian target of rapamycin complex 1 (mTORC1) protein expression level was significantly down-regulated in the HIIT group, compared with those in the control group. These results suggest that HIIT induces hepatic ketone body production through altering mTORC1, PPARα and FGF21 expression in mice.


Subject(s)
Fibroblast Growth Factors , High-Intensity Interval Training , Ketone Bodies , Liver , Mechanistic Target of Rapamycin Complex 1 , Mice, Inbred C57BL , PPAR alpha , Physical Conditioning, Animal , Animals , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/blood , Male , Mice , PPAR alpha/metabolism , Ketone Bodies/metabolism , High-Intensity Interval Training/methods , Mechanistic Target of Rapamycin Complex 1/metabolism , Liver/metabolism , Physical Conditioning, Animal/physiology , TOR Serine-Threonine Kinases/metabolism , Multiprotein Complexes/metabolism
8.
Front Pharmacol ; 15: 1377876, 2024.
Article in English | MEDLINE | ID: mdl-38567357

ABSTRACT

Introduction: Acori Tatarinowii Rhizoma (ATR) is a well-known traditional Chinese medicine that is used for treating neuropathic diseases. However, there is little information about the safety of ATR. Methods: The present study evaluated the acute and subacute oral toxicity of a water extract of ATR in Institute of Cancer Research (ICR) mice. In acute trials, a single administration of extract at a dose 5,000 mg/kg body weight led to no clinical signs of toxicity or mortality, indicating that the lethal dose (LD50) exceeded 5,000 mg/kg. A subacute toxicity test was done using daily doses of 1,250, 2,500, and 5,000 mg/kg of the ATR extract for 28 days, which did not show any adverse clinical symptoms or mortality. However, the male renal organ index and urea level in mice given 5,000 mg/kg was obviously abnormal, which was consistent with pathological results and suggested that this dose might cause kidney injury. Results: Doses of ATR lower than 2,500 mg/kg could be regarded as safe, although the potential cumulative effects of long-term use of high doses of ATR need to be considered. Discussion: The study highlights the function of ATR in reducing blood lipids and provides a new idea for its widespread clinical use in the future.

9.
Immunology ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38544428

ABSTRACT

Glucagon-like peptide-1 receptor agonists (GLP-1RAs), which are drugs used for treating type 2 diabetes, have been reported to exert anti-inflammatory effects on inflammatory bowel disease (IBD), the mechanism of which remains elusive. Here, we report that GLP-1RAs ameliorate dextran sulfate sodium (DSS)-induced colitis in both wild-type and T/B-cell-deficient mice through modulating group 3 innate lymphoid cells (ILC3s), a subset of innate lymphoid cells that regulate intestinal immunity. GLP-1RAs promote IL-22 production by ILC3, and the protective effect of GLP-1RAs on DSS-induced colitis was abrogated in ILC3-deficient RORgtgfp/gfp mice. Furthermore, the treatment effect of GLP-RAs on colitis, as well as the generation of IL-22-producing ILC3s by GLP-RAs, is dependent on the gut microbiota. GLP-1RAs increase the abundance of Firmicutes and Proteobacteria in the gut, particularly beneficial bacteria such as Lactobacillus reuteri, and decrease the abundance of enteropathogenic Staphylococcus bacteria. The untargeted gas chromatography (GC)/liquid chromatography (LC)-mass spectrometry (MS) of faecal metabolites further revealed enrichment of N,N-dimethylsphingosine (DMS), an endogenous metabolite derived from sphingosine, in the GLP-1RA-treated group. Strikingly, DMS ameliorates colitis while promoting intestinal IL-22-producing ILC3s. Taken together, our findings show that GLP-1RAs exert a therapeutic effect on colitis possibly by regulating the microbiota-DMS-IL-22+ILC3 axis, highlighting the potential beneficial role of GLP-RAs in inflammatory intestinal disorders with diabetes complications.

10.
Phytomedicine ; 128: 155324, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552437

ABSTRACT

BACKGROUND: Researchers have not studied the integrity, orderly correlation, and dynamic openness of complex organisms and explored the laws of systems from a global perspective. In the context of reductionism, antidepressant development formerly focused on advanced technology and molecular details, clear targets and mechanisms, but the clinical results were often unsatisfactory. PURPOSE: MDD represents an aggregate of different and highly diverse disease subtypes. The co-occurrence of stress-induced nonrandom multimorbidity is widespread, whereas only a fraction of the potential clusters are well known, such as the MDD-FGID cluster. Mapping these clusters, and determining which are nonrandom, is vital for discovering new mechanisms, developing treatments, and reconfiguring services to better meet patient needs. STUDY DESIGN: Acute stress 15-minute forced swimming (AFS) or CUMS protocols can induce the nonrandom MDD-FGID cluster. Multiple biological processes of rats with depression-like behaviours and gastrointestinal dysmobility will be captured under conditions of stress, and the Fructus Aurantii-Rhizoma Chuanxiong (ZQCX) decoction will be utilized to dock the MDD-FGID cluster. METHODS/RESULTS: Here, Rhizoma Chuanxiong, one of the seven components of Chaihu-shugan-San, elicited the best antidepressant effect on CUMS rats, followed by Fructus Aurantii. ZQCX reversed AFS-induced depression-like behaviours and gastrointestinal dysmobility by regulating the glutamatergic system, AMPAR/BDNF/mTOR/synapsin I pathway, ghrelin signalling and gastrointestinal nitric oxide synthase. Based on the bioethnopharmacological analysis strategy, the determined meranzin hydrate (MH) and senkyunolide I (SI) by UPLC-PDA, simultaneously absorbed by the jejunum and hippocampus of rats, have been considered major absorbed bioactive compounds acting on behalf of ZQCX. Cotreatment with MH and SI at an equivalent dose in ZQCX synergistically replicated over 50.33 % efficacy of the parent formula in terms of antidepressant and prokinetic actions by modulating neuroinflammation and ghrelin signalling. CONCLUSION: Brain-centric mind shifts require the integration of multiple central and peripheral systems and the elucidation of the underlying neurobiological mechanisms that ultimately contribute to novel therapeutic options. Ghrelin signalling and the immune system may partially underlie multimorbidity vulnerability, and ZQCX anchors stress-induced MDD-FGID clusters by docking them. Combining the results of micro details with the laws of the macro world may be more effective in finding treatments for MDD.


Subject(s)
Drugs, Chinese Herbal , Rats, Sprague-Dawley , Stress, Psychological , Animals , Drugs, Chinese Herbal/pharmacology , Stress, Psychological/drug therapy , Male , Rats , Antidepressive Agents/pharmacology , Disease Models, Animal , Gastrointestinal Diseases/drug therapy , Depression/drug therapy , Depressive Disorder, Major/drug therapy , Gastrointestinal Motility/drug effects , Neurosecretory Systems/drug effects , Behavior, Animal/drug effects , Citrus/chemistry , Brain-Derived Neurotrophic Factor/metabolism
11.
Adv Mater ; : e2401271, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549262

ABSTRACT

The advancement of aqueous micro-supercapacitors offers an enticing prospect for a broad spectrum of applications, spanning from wearable electronics to micro-robotics and sensors. Unfortunately, conventional micro-supercapacitors are characterized by low capacity and slopy voltage profiles, limiting their energy density capabilities. To enhance the performance of these devices, the use of 2D MXene-based compounds has recently been proposed. Apart from their capacitive contributions, these structures can be loaded with redox-active nanowires which increase their energy density and stabilize their operation voltage. However, introducing rigid nanowires into MXene films typically leads to a significant decline in their mechanical properties, particularly in terms of flexibility. To overcome this issue, super stretchable micro-pseudocapacitor electrodes composed of MXene nanosheets and in situ reconstructed Ag nanoparticles (Ag-NP-MXene) are herein demonstrated, delivering high energy density, stable operation voltage of ≈1 V, and fast charging capabilities. Careful experimental analysis and theoretical simulations of the charging mechanism of the Ag-NP-MXene electrodes reveal a dual nature charge storage mechanism involving ad(de)sorption of ions and conversion reaction of Ag nanoparticles. The superior mechanical properties of synthesized films obtained through in situ construction of Ag-NP-MXene structure show an ultra stretchability, allowing the devices to provide stable voltage and energy output even at 100% elongation.

12.
Int J Biol Macromol ; 265(Pt 1): 130866, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490390

ABSTRACT

In a previous study, we separated an active fucoidan (JHCF4) from acid-processed Sargassum fusiforme, then analyzed and confirmed its structure. In the present study, we investigated the potential anti-inflammatory properties of JHCF4 and a JHCF4-based hydrogel in vitro and in vivo. JHCF4 reliably inhibited nitric oxide (NO) production in LPS-induced RAW 264.7 macrophages, with an IC50 of 22.35 µg/ml. Furthermore, JHCF4 attenuated the secretion of prostaglandin E2, tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6, indicating that JHCF4 regulates inflammatory reactions. In addition, JHCF4 downregulated iNOS and COX-2 and inhibited the activation of the MAPK pathway. According to further in vivo analyses, JHCF4 significantly reduced the generation of reactive oxygen species (ROS), NO production, and cell death in an LPS-induced zebrafish model, suggesting that JHCF4 exhibits anti-inflammatory effects. Additionally, a JHCF4-based hydrogel was developed, and its properties were evaluated. The hydrogel significantly decreased inflammatory and nociceptive responses in carrageenan (carr)-induced mouse paws by reducing the increase in paw thickness and decreasing neutrophil infiltration in the basal and subcutaneous layers of the toe epidermis. These results indicate that JHCF4 exhibits potential anti-inflammatory activity in vitro and in vivo and that JHCF4-based hydrogels have application prospects in the cosmetic and pharmaceutical fields.


Subject(s)
Edible Seaweeds , Lipopolysaccharides , Polysaccharides , Sargassum , Mice , Animals , Lipopolysaccharides/pharmacology , Lipopolysaccharides/therapeutic use , Hydrogels/pharmacology , Hydrogels/therapeutic use , Zebrafish/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Sargassum/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Nitric Oxide/metabolism , RAW 264.7 Cells , NF-kappa B/metabolism
13.
J Clin Hypertens (Greenwich) ; 26(4): 363-373, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430459

ABSTRACT

Left ventricular hypertrophy (LVH) is a hypertensive heart disease that significantly escalates the risk of clinical cardiovascular events. Its etiology potentially incorporates various clinical attributes such as gender, age, and renal function. From mechanistic perspective, the remodeling process of LVH can trigger increment in certain biomarkers, notably sST2 and NT-proBNP. This multicenter, retrospective study aimed to construct an LVH risk assessment model and identify the risk factors. A total of 417 patients with essential hypertension (EH), including 214 males and 203 females aged 31-80 years, were enrolled in this study; of these, 161 (38.6%) were diagnosed with LVH. Based on variables demonstrating significant disparities between the LVH and Non-LVH groups, three multivariate stepwise logistic regression models were constructed for risk assessment: the "Clinical characteristics" model, the "Biomarkers" model (each based on their respective variables), and the "Clinical characteristics + Biomarkers" model, which amalgamated both sets of variables. The results revealed that the "Clinical characteristics + Biomarkers" model surpassed the baseline models in performance (AUC values of the "Clinical characteristics + Biomarkers" model, the "Biomarkers" model, and the "Clinical characteristics" model were .83, .75, and .74, respectively; P < .0001 for both comparisons). The optimized model suggested that being female (OR: 4.26, P <.001), being overweight (OR: 1.88, p = .02) or obese (OR: 2.36, p = .02), duration of hypertension (OR: 1.04, P = .04), grade III hypertension (OR: 2.12, P < .001), and sST2 (log-transformed, OR: 1.14, P < .001) were risk factors, while eGFR acted as a protective factor (OR: .98, P = .01). These findings suggest that the integration of clinical characteristics and biomarkers can enhance the performance of LVH risk assessment.


Subject(s)
Hypertension , Hypertrophy, Left Ventricular , Female , Humans , Male , Biomarkers , Essential Hypertension/complications , Essential Hypertension/epidemiology , Hypertension/complications , Hypertension/diagnosis , Hypertension/epidemiology , Hypertrophy, Left Ventricular/diagnosis , Hypertrophy, Left Ventricular/epidemiology , Hypertrophy, Left Ventricular/etiology , Nomograms , Retrospective Studies , Risk Assessment , Adult , Middle Aged , Aged , Aged, 80 and over
14.
PLoS One ; 19(3): e0300935, 2024.
Article in English | MEDLINE | ID: mdl-38517844

ABSTRACT

OBJECTIVE: This study aims to investigate the relationship between taste dysfunction and depression among patients with schizophrenia, to achieve early detection of depression in clinical practice. METHODS: Following PRISMA guidance, a comprehensive literature search was conducted globally, covering papers published from 1961 to June 2023. A total of 17 manuscripts were selected through meta-analysis and sensitivity analysis after examining available materials from seven databases to determine the correlation between depression and taste dysfunction. RESULTS: The comparison of the 17 selected manuscripts revealed that individuals with gustatory dysfunction may be more likely to experience depressive symptoms (SMD, 0.51, 95% CI, 0.08 to 0.93, p = 0.02). Depression is associated with taste dysfunction in certain aspects, as indicated by the pleasantness ratings of sucrose solutions (SMD, -0.53, 95% confidence interval [CI] -1.11 to 0.05, p = 0.08), gustatory identification ability (SMD, 0.96, 95% CI, 0.03 to 1.89, p = 0.04), and the perception threshold of sweet taste (MD, 0.80, 95% CI, 0.79 to 0.81, p < 0.00001). CONCLUSIONS: Due to variations in the methods, designs, and selection criteria employed in the included studies, it is necessary to establish a feasible framework. Future research using detailed and targeted approaches can provide clearer and more unified conclusions on the relationship between taste dysfunction and depression. Moreover, further high-quality research is needed to obtain clearer conclusions and explore the potential of taste dysfunction as an effective tool for early screening of depression. TRIAL REGISTRATION: This review has been registered in the PROSPERO on April 2022 with the identifier CRD42023400172.


Subject(s)
Depression , Schizophrenia , Humans , Depression/diagnosis , Depression/prevention & control , Schizophrenia/complications , Schizophrenia/diagnosis , Sucrose , Taste Disorders , Sensation
15.
Zhongguo Zhong Yao Za Zhi ; 49(2): 285-293, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403304

ABSTRACT

The 21st century is a highly information-driven era, and traditional Chinese medicine(TCM) pharmacy is also moving towards digitization and informatization. New technologies such as artificial intelligence and big data with information technology as the core are being integrated into various aspects of drug research, manufacturing, evaluation, and application, promoting interaction between these stages and improving the quality and efficiency of TCM preparations. This, in turn, provides better healthcare services to the general population. The deep integration of emerging technologies such as artificial intelligence, big data, and cloud computing with the TCM pharmaceutical industry will innovate TCM pharmaceutical technology, accelerate the research and industrialization process of TCM pharmacy, provide cutting-edge technological support to the global scientific community, boost the efficiency of the TCM industry, and promote economic and social development. Drawing from recent developments in TCM pharmacy in China, this paper discussed the current research status and future trends in digital TCM pharmacy, aiming to provide a reference for future research in this field.


Subject(s)
Drugs, Chinese Herbal , Pharmacy , Humans , Medicine, Chinese Traditional , Artificial Intelligence , Technology, Pharmaceutical , Drug Industry
16.
J Dig Dis ; 25(1): 27-35, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38342693

ABSTRACT

OBJECTIVE: To investigate the clinical potential and safety of Moluodan to reverse gastric precancerous lesions. METHODS: Patients aged 18-70 years diagnosed with moderate-to-severe atrophy and/or moderate-to-severe intestinal metaplasia, with or without low-grade dysplasia, and negative for Helicobacter pylori were recruited in this randomized, double-blind, parallel-controlled trial. The primary outcome was the improvement of global histological diagnosis at 1-year follow-up endoscopy using the operative link for gastritis assessment, the operative link for gastric intestinal metaplasia assessment, and the disappearance rate of dysplasia. RESULTS: Between November 3, 2017 and January 27, 2021, 166 subjects were randomly assigned to the Moluodan group, 168 to the folic acid group, 84 to the combination group, and 84 to the high-dose Moluodan group. The improvement in global histological diagnosis was achieved in 60 (39.5%) subjects receiving Moluodan, 59 (37.8%) receiving folic acid, 26 (32.1%) receiving the combined drugs, and 36 (47.4%) receiving high-dose Moluodan. Moluodan was non-inferior to folic acid (95% confidence interval: -9.2 to 12.5; P = 0.02). High-dose Moluodan had a trend for better protective efficacy, though there was no statistical significance. The disappearance rate of dysplasia was 82.8% in the Moluodan group, which was superior to folic acid (53.9%; P = 0.006). No drug-related serious adverse events were observed. CONCLUSIONS: One pack of Moluodan three times daily for 1 year was safe and effective in reversing gastric precancerous lesions, especially dysplasia. Doubling its dose showed a better efficacy trend.


Subject(s)
Drugs, Chinese Herbal , Gastritis, Atrophic , Helicobacter Infections , Helicobacter pylori , Precancerous Conditions , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Gastritis, Atrophic/drug therapy , Gastritis, Atrophic/pathology , Helicobacter Infections/complications , Helicobacter Infections/drug therapy , Precancerous Conditions/drug therapy , Precancerous Conditions/pathology , Metaplasia , Folic Acid/therapeutic use , Gastric Mucosa/pathology
17.
Nat Rev Endocrinol ; 20(6): 349-365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38424377

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors, with many GPCRs having crucial roles in endocrinology and metabolism. Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly regarding GPCRs, over the past decade. Since the first pair of GPCR structures resolved by cryo-EM were published in 2017, the number of GPCR structures resolved by cryo-EM has surpassed the number resolved by X-ray crystallography by 30%, reaching >650, and the number has doubled every ~0.63 years for the past 6 years. At this pace, it is predicted that the structure of 90% of all human GPCRs will be completed within the next 5-7 years. This Review highlights the general structural features and principles that guide GPCR ligand recognition, receptor activation, G protein coupling, arrestin recruitment and regulation by GPCR kinases. The Review also highlights the diversity of GPCR allosteric binding sites and how allosteric ligands could dictate biased signalling that is selective for a G protein pathway or an arrestin pathway. Finally, the authors use the examples of glycoprotein hormone receptors and glucagon-like peptide 1 receptor to illustrate the effect of cryo-EM on understanding GPCR biology in endocrinology and metabolism, as well as on GPCR-related endocrine diseases and drug discovery.


Subject(s)
Cryoelectron Microscopy , Drug Discovery , Receptors, G-Protein-Coupled , Cryoelectron Microscopy/methods , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/chemistry , Drug Discovery/methods , Endocrinology/methods , Animals , Signal Transduction , Ligands
18.
Cureus ; 16(1): e51986, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38344572

ABSTRACT

A 66-year-old neurofibromatosis type 1 (NF1) patient with polyarticular pain for nine years, aggravated for two days, was transferred from the Emergency Intensive Care Unit (EICU) to our rheumatology department. She was diagnosed with NF1 nine years ago by a gene mutation detection and coronary heart disease (CHD) three months ago. The patient was diagnosed with rheumatoid arthritis (RA) this time. After 24 days of treatment with appropriate medication, the patient was discharged with relieved joint pain. However, about four months later, the patient died of circulatory failure caused by myocardial infarction. We analyzed the possible reasons for her outcome and made a review of the literature. There are few clinical reports of NF1 complicated with RA. We found five cases reported in the literature up to date during our search and included them in our communication to compare with our case. NF1 combined with RA mainly affects adult women and usually starts with NF1 and is followed by RA after at least six years of NF1 symptom onset. Although the summarized characteristics of clinical and potential pathogenesis of NF1 combined with RA were limited with these six cases, we hope that this will help clinicians to increase their understanding of this rare complication, thus helping to guide clinical medication.

19.
Circ Heart Fail ; 17(3): e010569, 2024 03.
Article in English | MEDLINE | ID: mdl-38410978

ABSTRACT

BACKGROUND: Exercise training can promote cardiac rehabilitation, thereby reducing cardiovascular disease mortality and hospitalization rates. MicroRNAs (miRs) are closely related to heart disease, among which miR-574-3p plays an important role in myocardial remodeling, but its role in exercise-mediated cardioprotection is still unclear. METHODS: A mouse myocardial hypertrophy model was established by transverse aortic coarctation, and a 4-week swimming exercise training was performed 1 week after the operation. After swimming training, echocardiography was used to evaluate cardiac function in mice, and histopathologic staining was used to detect cardiac hypertrophy, myocardial fibrosis, and cardiac inflammation. Quantitative real-time polymerase chain reaction was used to detect the expression levels of miR-574-3p and cardiac hypertrophy markers. Western blotting detected the IL-6 (interleukin-6)/JAK/STAT inflammatory signaling pathway. RESULTS: Echocardiography and histochemical staining found that aerobic exercise significantly improved pressure overload-induced myocardial hypertrophy (n=6), myocardial interstitial fibrosis (n=6), and cardiac inflammation (n=6). Quantitative real-time polymerase chain reaction detection showed that aerobic exercise upregulated the expression level of miR-574-3p (n=6). After specific knockdown of miR-574-3p in mouse hearts with adeno-associated virus 9 using cardiac troponin T promoter, we found that the protective effect of exercise training on the heart was significantly reversed. Echocardiography and histopathologic staining showed that inhibiting the expression of miR-574-3p could partially block the effects of aerobic exercise on cardiac function (n=6), cardiomyocyte cross-sectional area (n=6), and myocardial fibrosis (n=6). Western blotting and immunohistochemical staining showed that the inhibitory effects of aerobic exercise on the IL-6/JAK/STAT pathway and cardiac inflammation were partially abolished after miR-574-3p knockdown. Furthermore, we also found that miR-574-3p exerts cardioprotective effects in cardiomyocytes by targeting IL-6 (n=3). CONCLUSIONS: Aerobic exercise protects cardiac hypertrophy and inflammation induced by pressure overload by upregulating miR-574-3p and inhibiting the IL-6/JAK/STAT pathway.


Subject(s)
Heart Failure , MicroRNAs , Myocarditis , Mice , Animals , Interleukin-6/metabolism , Janus Kinases/metabolism , Heart Failure/metabolism , Signal Transduction , STAT Transcription Factors/metabolism , Myocytes, Cardiac/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cardiomegaly/pathology , Myocarditis/genetics , Myocarditis/prevention & control , Inflammation/pathology , Disease Models, Animal , Fibrosis
20.
Heliyon ; 10(1): e22907, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38187307

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) occupy a pivotal role in the intricate pathogenesis of the autoimmune disorder, Type 1 diabetes mellitus (T1DM). Since our previous work demonstrated that trichosanthin (TCS), an active compound of Chinese herb medicine Tian Hua Fen, regulated immune response, we aimed to clarify the efficacy and molecular mechanism of TCS in the treatment of T1DM. To this end, T1DM mouse model was established by streptozotocin (STZ) induction. The mice were randomly divided into normal control group (Ctl), T1DM group (STZ), TCS treated diabetic group (STZ + TCS) and insulin-treated diabetic group (STZ + insulin). Our comprehensive evaluation encompassed variables such as blood glucose, glycosylated hemoglobin, body weight, pertinent biochemical markers, pancreatic histopathology, and the distribution of immune cell populations. Furthermore, we meticulously isolated MDSCs from the bone marrow of T1DM mice, probing into the expressions of genes pertaining to the advanced glycation end product receptor (RAGE)/NF-κB signaling pathway through RT-qPCR. Evidently, TCS exhibited a substantial capacity to effectively counteract the T1DM-induced elevation in random blood glucose, glycosylated hemoglobin, and IL-6 levels in plasma. Pathological scrutiny underscored the ability of TCS to mitigate the damage incurred by islets. Intriguingly, TCS interventions engendered a reduction in the proportion of MDSCs within the bone marrow, particularly within the IL-6+ MDSC subset. In contrast, IL-10+ MDSCs exhibited an elevation following TCS treatment. Moreover, we observed a significant down-regulation of relative mRNA of pro-inflammatory genes, including arginase 1 (Arg1), inducible nitric oxide synthase (iNOS), RAGE and NF-κB, within MDSCs due to the influence of TCS. It decreases total MDSCs and regulates the balance between IL-6+ and IL-10+ MDSCs thus alleviating the symptoms of T1DM. TCS also down-regulates the RAGE/NF-κB signaling pathway, making it a promising alternative therapeutic treatment for T1DM. Collectively, our study offered novel insights into the underlying mechanism by which TCS serves as a promising therapeutic intervention for T1DM.

SELECTION OF CITATIONS
SEARCH DETAIL
...