Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 828: 146462, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35413394

ABSTRACT

Terpenoids are widely distributed in plants and play important roles in the regulation of plant growth and development and in the interactions between plants and both the environment and other organisms. However, terpene synthase (TPS) genes have not been systematically investigated in the tetraploid Gossypium hirsutum. In this study, whole genome identification and characterization of the TPS family from G. hirsutum were carried out. Eighty-five TPS genes, including 47 previously unidentified genes, were identified in the G. hirsutum genome and classified into 5 subfamilies according to protein sequence similarities, as follows: 43 GhTPS-a, 29 GhTPS-b, 4 GhTPS-c, 7 GhTPS-e/f, and 2 GhTPS-g members. These 85 TPS genes were mapped onto 19 chromosomes of the G. hirsutum genome. Segmental duplications and tandem duplications contributed greatly to the expansion of TPS genes in G. hirsutum and were followed by intense purifying selection during evolution. Indentification of cis-acting regulatory elements suggest that the expression of TPS genes is regulated by a variety of hormones. RNA sequencing (RNA-seq) expression profile analysis revealed that the TPS genes had distinct spatiotemporal expression patterns, and several genes were highly and preferentially expressed in the leaves of cotton with gossypol glands (glanded cotton) versus a glandless strain. Virus-induced gene silencing (VIGS) of three TPS genes yielded plants characterized by fewer, smaller, and lighter gossypol glands, which indicated that these three genes were responsible for gland activity. Taken together, our results provide a solid basis for further elucidation of the biological functions of TPS genes in relation to gland activity and gossypol biosynthesis to develop cotton cultivars with low cottonseed gossypol contents.


Subject(s)
Alkyl and Aryl Transferases , Gossypol , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Gene Expression Regulation, Plant , Gossypium , Gossypol/metabolism , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
2.
BMC Plant Biol ; 20(1): 533, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33228522

ABSTRACT

BACKGROUND: The AP2/ERFs belong to a large family of transcription factors in plants. The AP2/ERF gene family has been identified as a key player involved in both biotic and abiotic stress responses in plants, however, no comprehensive study has yet been carried out on the AP2/ERF gene family in rose (Rosa sp.), the most important ornamental crop worldwide. RESULTS: The present study comprises a genome-wide analysis of the AP2/ERF family genes (RcERFs) in the rose, involving their identification, gene structure, phylogenetic relationship, chromosome localization, collinearity analysis, as well as their expression patterns. Throughout the phylogenetic analysis, a total of 131 AP2/ERF genes in the rose genome were divided into 5 subgroups. The RcERFs are distributed over all the seven chromosomes of the rose, and genome duplication may have played a key role in their duplication. Furthermore, Ka/Ks analysis indicated that the duplicated RcERF genes often undergo purification selection with limited functional differentiation. Gene expression analysis revealed that 23 RcERFs were induced by infection of the necrotrophic fungal pathogen Botrytis cinerea. Presumably, these RcERFs are candidate genes which can react to the rose's resistance against Botrytis cinerea infection. By using virus-induced gene silencing, we confirmed that RcERF099 is an important regulator involved in the B.cinerea resistance in the rose petal. CONCLUSION: Overall, our results conclude the necessity for further study of the AP2/ERF gene family in rose, and promote their potential application in improving the rose when subjected to biological stress.


Subject(s)
Botrytis/physiology , Disease Resistance/genetics , Genome, Plant/genetics , Plant Diseases/immunology , Rosa/genetics , Transcription Factors/genetics , Flowers/genetics , Flowers/immunology , Flowers/microbiology , Gene Expression Regulation, Plant , Gene Silencing , Host-Pathogen Interactions , Multigene Family , Phylogeny , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Rosa/immunology , Rosa/microbiology , Stress, Physiological , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL