Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 709
Filter
1.
Aging Med (Milton) ; 7(4): 453-455, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39234202

ABSTRACT

Based on a subanalysis of the NEOSUMMIT-01 study, it was revealed that perioperative immune checkpoint blockade (ICB) combined with chemotherapy has therapeutic effects in elderly patients with locally advanced gastric cancer, providing a new strategy for the treatment of elderly gastric cancer patients.

2.
Clin Neurol Neurosurg ; 245: 108495, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39126898

ABSTRACT

BACKGROUND: Perihematomal edema (PHE) is regarded as a potential intervention indicator of secondary injury following intracerebral hemorrhage (ICH). But it still lacks a comprehensive prediction model for early PHE formation. METHODS: The included ICH patients have received an initial Computed Tomography scan within 6 hours of symptom onset. Hematoma volume and PHE volume were computed using semiautomated computer-assisted software. The volume of the hematoma, edema around the hematoma, and surface area of the hematoma were calculated. The platelet-to-lymphocyte ratio (PLR) was calculated by dividing the platelet count by the lymphocyte cell count. All analyses were 2-tailed, and the significance level was determined by P <0.05. RESULTS: A total of 226 patients were included in the final analysis. The optimal cut-off values for PHE volume increase to predict poor outcomes were determined as 5.5 mL. For clinical applicability, we identified a value of 5.5 mL as the optimal threshold for early PHE growth. In the multivariate logistic regression analyses, we finally found that baseline hematoma surface area (p < 0.001), expansion-prone hematoma (p < 0.001), and PLR (p = 0.033) could independently predict PHE growth. The comprehensive prediction model demonstrated good performance in predicting PHE growth, with an area under the curve of 0.841, sensitivity of 0.807, and specificity of 0.732. CONCLUSION: In this study, we found that baseline hematoma surface area, expansion-prone hematoma, and PLR were independently associated with PHE growth. Additionally, a risk nomogram model was established to predict the PHE growth in patients with ICH.


Subject(s)
Brain Edema , Cerebral Hemorrhage , Hematoma , Humans , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/complications , Male , Female , Brain Edema/diagnostic imaging , Aged , Middle Aged , Hematoma/diagnostic imaging , Hematoma/pathology , Aged, 80 and over , Tomography, X-Ray Computed , Retrospective Studies , Adult , Predictive Value of Tests
3.
CNS Neurosci Ther ; 30(8): e14882, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39097917

ABSTRACT

AIMS: To explore the clinico-sero-pathological characteristics and risk prediction model of idiopathic inflammatory myopathy (IIM) patients with different muscular perifascicular (PF) changes. METHODS: IIM patients in our center were enrolled and the clinico-sero-pathological data were retrospectively analyzed. A decision tree model was established through machine learning. RESULTS: There were 231 IIM patients enrolled, including 53 with perifascicular atrophy (PFA), 39 with perifascicular necrosis (PFN), and 26 with isolated perifascicular enhancement of MHC-I/MHC-II (PF-MHCn). Clinically, PFA patients exhibited skin rashes and dermatomyositis-specific antibodies (DM-MSAs, 74.5%) except for anti-Mi2. PFN patients showed the most severe muscle weakness, highest creatine kinase (CK), anti-Mi2 (56.8%), and anti-Jo-1 (24.3%) antibodies. PF-MHCn patients demonstrated negative MSAs (48.0%) and elevated CK. Histopathologically, MAC predominantly deposited on PF capillaries in PFA but on non-necrotic myofiber in PFN (43.4% and 36.8%, p < 0.001). MxA expression was least in PF-MHCn (36.0% vs. 83.0% vs. 63.2%, p < 0.001). The decision tree model could effectively predict different subgroups, especially PFA and PFN. CONCLUSIONS: Three types of PF change of IIMs representing distinct clinico-serological characteristics and pathomechanism. Undiscovered MSAs should be explored especially in PF-MHCn patients. The three pathological features could be accurately predicted through the decision tree model.


Subject(s)
Myositis , Humans , Myositis/pathology , Male , Female , Middle Aged , Retrospective Studies , Adult , Aged , Autoantibodies/blood , Necrosis , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Machine Learning , Decision Trees
4.
World J Pediatr Surg ; 7(2): e000748, 2024.
Article in English | MEDLINE | ID: mdl-39104727

ABSTRACT

Objective: This study was performed to evaluate the efficacy of robot-assisted thoracoscopic surgery (RATS) in the treatment of pulmonary sequestration (PS) in children. Methods: All video-assisted thoracoscopic surgery (VATS) and RAST performed on patients with PS at a single center from May 2019 to July 2023 were identified. The χ 2 and Wilcoxon tests were used to compare the perioperative outcomes between VATS and RATS groups. Results: Ninety-three patients underwent RATS while 77 patients underwent VATS. In both two groups, one patient converted to thoracotomy and no surgical mortality case. The median operation time was longer for the RATS group compared with the VATS group (75 min vs. 60 min, p <0.001). A lower ratio of chest tube indwelling (61.3% vs. 90.9%, p <0.001), fewer drainage days (1.0 day vs. 2.0 days, p <0.001), and a shorter postoperative length of stay (5.0 days vs. 6.0 days, p <0.001) were found in the RATS group than that in the VATS group. No significant difference was found in the incidence of short-term postoperative complications (hydrothorax and pneumothorax) between two groups. Conclusions: RATS was safe and effective in children with PS over 6 months old and more than 7 kg. Furthermore, RATS led to better short-time postoperative outcome than VATS. Multi-institutional studies are warranted to compare differences in long-term outcomes between RATS and VATS.

5.
Int Immunopharmacol ; 139: 112590, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38996778

ABSTRACT

BACKGROUND: Neonatal necrotizing enterocolitis (NEC) is one of the most prevalent and severe intestinal emergencies in newborns. The inflammatory activation of macrophages is associated with the intestinal injury of NEC. The neuroimmune regulation mediated by α7 nicotinic acetylcholine receptor (α7nAChR) plays an important role in regulating macrophage activation and inflammation progression, but in NEC remains unclear. This study aims to explore the effect of macrophage α7nAChR on NEC. METHODS: Mice NEC model were conducted with high-osmolarity formula feeding, hypoxia, and cold stimulation. The α7nAChR agonist PNU-282987 and mTOR inhibitor rapamycin were treated by intraperitoneal injections in mice. The expression and distribution of macrophages, α7nAChR, and phospho-mammalian target of rapamycin (p-mTOR) in the intestines of NEC patients and mice was assessed using immunohistochemistry, immunofluorescence, and flow cytometry. The expression of NLRP3, activated caspase-1 and IL-1ß in mice intestines was detected by flow cytometry, western blot or ELISA. In vitro, the mouse RAW264.7 macrophage cell line was also cultured followed by various treatments. Expression of p-mTOR, NLRP3, activated caspase-1, and IL-1ß in macrophages was determined. RESULTS: Macrophages accumulated in the intestines and the expression of α7nAChR in the mucosal and submucosal layers of the intestines was increased in both the NEC patients and mice. The p-mTOR and CD68 were increased and co-localized in intestines of NEC patients. In vitro, α7nAChR agonist PNU-282987 significantly reduced the increase of NLRP3, activated caspase-1, and IL-1ß in macrophages. PNU-282987 also significantly reduced the increase of p-mTOR. The effect was blocked by AMPK inhibitor compound C. The expression of NLRP3, activated caspase-1, and IL-1ß was inhibited after mTOR inhibitor rapamycin treatment. In NEC model mice, PNU-282987 reduced the expression of p-mTOR, NLRP3, activated caspase-1, and IL-1ß in the intestine. Meanwhile, rapamycin significantly attenuated NLRP3 activation and the release of IL-1ß. Moreover, the proportion of intestinal macrophages and intestinal injury decreased after PNU-282987 treatment. CONCLUSION: Macrophage α7nAChR activation mitigates NLRP3 inflammasome activation by modulating mTOR phosphorylation, and subsequently alleviates intestinal inflammation and injury in NEC.


Subject(s)
Benzamides , Bridged Bicyclo Compounds , Enterocolitis, Necrotizing , Interleukin-1beta , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , TOR Serine-Threonine Kinases , alpha7 Nicotinic Acetylcholine Receptor , Animals , Female , Humans , Infant, Newborn , Male , Mice , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , Animals, Newborn , Benzamides/pharmacology , Benzamides/therapeutic use , Bridged Bicyclo Compounds/pharmacology , Bridged Bicyclo Compounds/therapeutic use , Disease Models, Animal , Enterocolitis, Necrotizing/drug therapy , Enterocolitis, Necrotizing/metabolism , Enterocolitis, Necrotizing/pathology , Enterocolitis, Necrotizing/immunology , Interleukin-1beta/metabolism , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
6.
Front Cardiovasc Med ; 11: 1373097, 2024.
Article in English | MEDLINE | ID: mdl-38988668

ABSTRACT

Objective: To identify the correlation between thrombosis and atherosclerosis in systemic lupus erythematosus (SLE) patients with antiphospholipid antibodies (aPLs) (SLE/aPLs) through high-resolution magnetic resonance imaging (HR-MRI) of the carotid artery. Methods: A single-center, cross-sectional study was conducted. We collected consecutive patients with SLE/aPLs and healthy controls who underwent carotid HR-MRI examinations. The morphometric characteristics of the common carotid artery (CCA), internal carotid artery (ICA), external carotid artery (ECA), and carotid bulb (Sinus) were measured, and the differences in morphometric parameters between different groups were analyzed. Results: A total of 144 carotid arteries were analyzed. Compared with the control group, the wall area, wall thickness (WT and WTmax), and normalized wall index of CCA, ICA, ECA, and Sinus were increased in patients with SLE/aPLs, and the total vascular area (TVA) of CCA, ICA, and Sinus, and the bifurcation angle (BIFA) of ICA-ECA were also increased. A negative lupus anticoagulant (LAC) (with or without positive anticardiolipin antibody (aCL) or anti-ß2glycoprotein antibody (aß2GPI)) contributed to illustrating lower increased TVA and thickened vessel walls of CCA and ICA in SLE/aPLs patients without thrombotic events. Logistic regression analysis showed that WTmaxSinus and WTmaxGlobal were independent risk factors for thrombotic events in SLE/aPLs patients. The receiver operator characteristic curve showed that the cut-off value of WTmaxSinus was 2.855 mm, and WTmaxGlobal was 3.370 mm. Conclusion: HR-MRI ensures the complete and accurate measurement of carotid morphometric parameters. Compared with the control group, the carotid artery in patients with SLE/aPLs is mainly characterized by diffusely thickened vessel walls, and the patients with thrombotic events showed additional higher vascular area of CCA and ICA, and BIFA of ICA-ECA without significant change in lumen area. The carotid arteries of SLE/aPLs patients with thrombotic events exhibited significant vessel wall thickening in all segments except ECA compared to those without thrombotic events. LAC-negative and non-thrombotic events distinguish relatively early atherosclerosis in the carotid arteries in patients with SLE/aPLs. Patients with SLE/aPLs that possess circumscribed thickened carotid vessel walls (>3.370 mm), particularly thickened at the Sinus (>2.855 mm), may require management strategies for the risk of thrombotic events.

7.
Cell Biosci ; 14(1): 94, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026356

ABSTRACT

BACKGROUD: Type II congenital pulmonary airway malformation (CPAM) is a rare pulmonary microcystic developmental malformation. Surgical excision is the primary treatment for CPAM, although maternal steroids and betamethasone have proven effective in reducing microcystic CPAM. Disturbed intercellular communication may contribute to the development of CPAM. This study aims to investigate the expression profile and analyze intercellular communication networks to identify genes potentially associated with type II CPAM pathogenesis and therapeutic targets. METHODS: RNA sequencing (RNA-seq) was performed on samples extracted from both the cystic area and the adjacent normal tissue post-surgery in CPAM patients. Iterative weighted gene correlation network analysis (iWGCNA) was used to identify genes specifically expressed in type II CPAM. Single-cell RNA-seq (scRNA-seq) was integrated to unveil the heterogeneity in cell populations and analyze the communication and interaction within epithelial cell sub-populations. RESULTS: A total of 2,618 differentially expressed genes were identified, primarily enriched in cilium-related biological process and inflammatory response process. Key genes such as EDN1, GPR17, FPR2, and CHRM1, involved in the G protein-coupled receptor (GPCR) signaling pathway and playing roles in cell differentiation, apoptosis, calcium homeostasis, and the immune response, were highlighted based on the protein-protein interaction network. Type II CPAM-associated modules, including ciliary function-related genes, were identified using iWGCNA. By integrating scRNA-seq data, AGR3 (related to calcium homeostasis) and SLC11A1 (immune related) were identified as the only two differently expressed genes in epithelial cells of CPAM. Cell communication analysis revealed that alveolar type 1 (AT1) and alveolar type 2 (AT2) cells were the predominant communication cells for outgoing and incoming signals in epithelial cells. The ligands and receptors between epithelial cell subtypes included COLLAGEN genes enriched in PI3K-AKT singaling and involved in epithelial to mesenchymal transition. CONCLUSIONS: In summary, by integrating bulk RNA-seq data of type II CPAM with scRNA-seq data, the gene expression profile and critical signaling pathways such as GPCR signaling and PI3K-AKT signaling pathways were revealed. Abnormally expressed genes in these pathways may disrupt epithelial-mesenchymal transition and contribute to the development of CPAM. Given the effectiveness of prenatal treatments of microcystic CPAM using maternal steroids and maternal betamethasone administration, targeting the genes and signaling pathways involved in the development of CPAM presents a promising therapeutic strategy.

8.
Life Sci ; 352: 122893, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38971367

ABSTRACT

AIMS: Neonatal necrotizing enterocolitis (NEC) is a leading cause of intestine inflammatory disease, and macrophage is significantly activated during NEC development. Posttranslational modifications (PTMs) of proteins, particularly ubiquitination, play critical roles in immune response. This study aimed to investigate the effects of ubiquitin-modified proteins on macrophage activation and NEC, and discover novel NEC-related inflammatory proteins. MATERIALS AND METHODS: Proteomic and ubiquitin proteomic analyses of intestinal macrophages in NEC/healthy mouse pups were carried out. In vitro macrophage inflammation model and in vivo NEC mouse model, as well as clinical human samples were used for further verification the inhibitor of nuclear factor-κB kinase α (IKKα) ubiquitination on NEC development through Western blot, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR) and flow cytometry. KEY FINDINGS: We report here that IKKα was a new ubiquitin-modified protein during NEC through ubiquitin proteomics, and RING finger protein 31 (RNF31) acted as an E3 ligase to be involved in IKKα degradation. Inhibition of IKKα ubiquitination and degradation with siRNF31 or proteasome inhibitor decreased nuclear factor-κB (NF-κB) activation, thereby decreasing the expression of pro-inflammatory factors and M1 macrophage polarization, resulting in reliving the severity of NEC. SIGNIFICANCE: Our study suggests the activation of RNF31-IKKα-NF-κB axis triggering NEC development and suppressing RNF31-mediated IKKα degradation may be therapeutic strategies to be developed for NEC treatment.


Subject(s)
Enterocolitis, Necrotizing , I-kappa B Kinase , Inflammation , NF-kappa B , Ubiquitin-Protein Ligases , Ubiquitination , Animals , Female , Humans , Infant, Newborn , Male , Mice , Animals, Newborn , Disease Models, Animal , Enterocolitis, Necrotizing/metabolism , Enterocolitis, Necrotizing/pathology , I-kappa B Kinase/metabolism , Inflammation/metabolism , Inflammation/pathology , Intestines/pathology , Macrophages/metabolism , Mice, Inbred C57BL , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
10.
Sci Rep ; 14(1): 13308, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858394

ABSTRACT

The timely detection and management of hemorrhagic shock hold paramount importance in clinical practice. This study was designed to establish a nomogram that may facilitate early identification of hemorrhagic shock in pediatric patients with multiple-trauma. A retrospective study was conducted utilizing a cohort comprising 325 pediatric patients diagnosed with multiple-trauma, who received treatment at the Children's Hospital, Zhejiang University School of Medicine, Zhejiang, China. For external validation, an additional cohort of 144 patients from a children's hospital in Taizhou was included. The model's predictor selection was optimized through the application of the Least Absolute Shrinkage and Selection Operator (LASSO) regression. Subsequently, a prediction nomogram was constructed using multivariable logistic regression analysis. The performance and clinical utility of the developed model were comprehensively assessed utilizing various statistical metrics, including Harrell's Concordance Index (C-index), receiver operating characteristic (ROC) curve analysis, calibration curve analysis, and decision curve analysis (DCA). Multivariate logistic regression analysis identified systolic blood pressure (ΔSBP), platelet count, activated partial thromboplastin time (APTT), and injury severity score (ISS) as independent predictors for hemorrhagic shock. The nomogram constructed using these predictors demonstrated robust predictive capabilities, as evidenced by an impressive area under the curve (AUC) value of 0.963. The model's goodness-of-fit was assessed using the Hosmer-Lemeshow test (χ2 = 10.023, P = 0.209). Furthermore, decision curve analysis revealed significantly improved net benefits with the model. External validation further confirmed the reliability of the proposed predictive nomogram. This study successfully developed a nomogram for predicting the occurrence of hemorrhagic shock in pediatric patients with multiple trauma. This nomogram may serve as an accurate and effective tool for timely and efficient management of children with multiple trauma.


Subject(s)
Multiple Trauma , Nomograms , ROC Curve , Shock, Hemorrhagic , Humans , Shock, Hemorrhagic/diagnosis , Shock, Hemorrhagic/etiology , Shock, Hemorrhagic/therapy , Male , Female , Child , Retrospective Studies , Child, Preschool , Adolescent , Multiple Trauma/diagnosis , Multiple Trauma/complications , China/epidemiology , Injury Severity Score , Infant , Logistic Models
11.
Medicine (Baltimore) ; 103(23): e38393, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847665

ABSTRACT

To explore the expression and prognostic value of UHRF1 gene in soft tissue sarcoma (STS) and its related molecular mechanism. The expression data and clinicopathological parameters of STS were downloaded from the Cancer Genome Atlas (TCGA). The expression level of UHRF1 in STS and adjacent tissues and its relationship with clinicopathological characteristics were analyzed. The expression level of UHRF1 in STS tissues was significantly higher than that in paracancerous tissues (P < .001), and the overall survival (OS) time of patients with high UHRF1 expression was significantly shorter than that of patients with low UHRF1 expression (P = .002). The expression of UHRF1 was correlated with tumor necrosis, histological type and metastasis, and the differences were statistically significant (P = .013; P = .001; P = .002). The area ratio under receiver operating characteristic (ROC) curve between STS tissue and adjacent tissue of UHRF1 expression was 0.994. Number of tumors (HR = 0.416, 95%CI = 0.260-0.666, P < .001), depth of tumor (HR = 2.888, 95%CI = 0.910-9.168, P = .033), metastasis (HR = 2.888, 95% CI = 1.762-4.732, P < .001), residual tumor (HR = 2.637, 95% CI = 1.721-4.038, P < .001) and UHRF1 expression (HR = 1.342, 95% CI = 1.105-1.630, P = .003) were significantly associated with OS, and high expression of UHRF1 (HR = 1.387, 95%CI = 1.008-1.907, P = .044) was an independent risk factor for the prognosis of STS patients. The results of the nomogram exhibited that UHRF1 expression level had a significant effect on the total score value. GSEA enrichment analysis suggested that UHRF1 was involved in 14 signaling pathways regulating mRNA spliceosome, cell cycle, P53 signaling pathway were identified. Single sample gene set enrichment analysis (ssGSEA) exhibited that the expression of UHRF1 in STS was positively correlated with the level of Th2 cell infiltration, and negatively correlated with plasmacytoid dendritic cells (pDC), natural killer cells (NK), Eosinophils, Mast cells, etc. UHRF1 expression is involved in the immune microenvironment of HCC and affects the occurrence and development of HCC. UHRF1 is highly expressed in STS tissues. It is involved in the regulation of multiple tumor-related signaling pathways and immune cell microenvironment, suggesting that UHRF1 may be a potential molecular marker for prognosis prediction and targeted therapy of STS patients.


Subject(s)
Biomarkers, Tumor , CCAAT-Enhancer-Binding Proteins , Sarcoma , Ubiquitin-Protein Ligases , Humans , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Sarcoma/genetics , Sarcoma/pathology , Sarcoma/mortality , Sarcoma/metabolism , Female , Prognosis , Male , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Adult , ROC Curve , Aged , Clinical Relevance
12.
QJM ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837343

ABSTRACT

BACKGROUND: Maple Syrup Urine Disease (MSUD) is an autosomal recessive metabolic disorder originating from defects in the branched-chain α-ketoacid dehydrogenase (BCKDH) complex encoded by BCKDHA, BCKDHB, and DBT. This condition presents a spectrum of symptoms and potentially fatal outcomes. Although numerous mutations in the BCKDH complex genes associated with MSUD have been identified, the relationship between specific genotypes remains to be fully elucidated. AIM: Our objective was to predict the pathogenicity of these genetic mutations and establish potential links between genotypic alterations and the clinical phenotypes of MSUD. DESIGN: Retrospective population-based cohort. METHODS: We analyzed 20 MSUD patients from the Children's Hospital at Zhejiang University School of Medicine (Hangzhou, China), recorded from January 2010 to May 2023. Patients' blood samples were collected by heel-stick through neonatal screening, and amino acid profiles were measured by tandem mass spectrometry. In silico methods were employed to assess the pathogenicity, stability, and biophysical properties. Various computation tools were utilized for assessment, namely PredictSNP, MAGPIE, iStable, Align GVGD, ConSurf and SNP effect. RESULTS: We detected 25 distinct mutations, including 12 novel mutations. The BCKDHB gene was the most commonly affected (53.3%) compared to the BCKDHA gene (20.0%) and DBT gene (26.7%). In silico webservers predicted all novel mutations were disease-causing. CONCLUSIONS: This study highlights the genetic complexity of MSUD and underscores the importance of early detection and intervention. Integrating neonatal screening with advanced sequencing methodologies is pivotal in ensuring precise diagnosis and effective management of MSUD, thereby significantly improving the prognosis for individuals afflicted with this condition.

13.
J Genet Genomics ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885836

ABSTRACT

Phospholipase D (PLD) lipid-signaling enzyme superfamily has been widely implicated in various human malignancies, but its role and underlying mechanism remain unclear in nasopharyngeal carcinoma (NPC). Here, we analyze the expressions of 6 PLD family members between 87 NPC and 10 control samples through transcriptome analysis. Our findings reveal a notable upregulation of PLD1 in both NPC tumors and cell lines, correlating with worse disease-free and overall survival in NPC patients. Functional assays further elucidate PLD1's oncogenic role, demonstrating its pivotal promotion of critical tumorigenic processes such as cell proliferation and migration in vitro, as well as tumor growth in vivo. Notably, our study uncovers a positive feedback loop between PLD1 and the NF-κB signaling pathway to render NPC progression. Specifically, PLD1 enhances NF-κB activity by facilitating the phosphorylation and nuclear translocation of RELA (p65), which in turn binds to the promoter of PLD1, augmenting its expression. Moreover, RELA overexpression markedly rescues the inhibitory effects in PLD1-depleted NPC cells. Importantly, the application of the PLD1 inhibitor, VU0155069, substantially inhibits NPC tumorigenesis in a patient-derived xenograft (PDX) model. Together, our findings identify PLD1/NF-κB signaling as a positive feedback loop with promising therapeutic and prognostic potential in NPC.

14.
Lab Invest ; 104(8): 102090, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830579

ABSTRACT

Gastric cancer (GC) is one of the most common clinical malignant tumors worldwide, with high morbidity and mortality. Presently, the overall response rate to immunotherapy is low, and current methods for predicting the prognosis of GC are not optimal. Therefore, novel biomarkers with accuracy, efficiency, stability, performance ratio, and wide clinical application are needed. Based on public data sets, the chemotherapy cohort and immunotherapy cohort from Sun Yat-sen University Cancer Center, a series of bioinformatics analyses, such as differential expression analysis, survival analysis, drug sensitivity prediction, enrichment analysis, tumor immune dysfunction and exclusion analysis, single-sample gene set enrichment analysis, stemness index calculation, and immune cell infiltration analysis, were performed for screening and preliminary exploration. Immunohistochemical staining and in vitro experiments were performed for further verification. Overexpression of COX7A1 promoted the resistance of GC cells to Oxaliplatin. COX7A1 may induce immune escape by regulating the number of fibroblasts and their cellular communication with immune cells. In summary, measuring the expression levels of COX7A1 in the clinic may be useful in predicting the prognosis of GC patients, the degree of chemotherapy resistance, and the efficacy of immunotherapy.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Immunotherapy , Oxaliplatin , Stomach Neoplasms , Female , Humans , Male , Middle Aged , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cell Line, Tumor , Immunotherapy/methods , Oxaliplatin/therapeutic use , Oxaliplatin/pharmacology , Prognosis , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/therapy
16.
Cell Rep ; 43(5): 114173, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38700984

ABSTRACT

Mutations in the phosphatase and tensin homolog (PTEN) gene are associated with severe neurodevelopmental disorders. Loss of PTEN leads to hyperactivation of the mechanistic target of rapamycin (mTOR), which functions in two distinct protein complexes, mTORC1 and mTORC2. The downstream signaling mechanisms that contribute to PTEN mutant phenotypes are not well delineated. Here, we show that pluripotent stem cell-derived PTEN mutant human neurons, neural precursors, and cortical organoids recapitulate disease-relevant phenotypes, including hypertrophy, electrical hyperactivity, enhanced proliferation, and structural overgrowth. PTEN loss leads to simultaneous hyperactivation of mTORC1 and mTORC2. We dissect the contribution of mTORC1 and mTORC2 by generating double mutants of PTEN and RPTOR or RICTOR, respectively. Our results reveal that the synergistic hyperactivation of both mTORC1 and mTORC2 is essential for the PTEN mutant human neural phenotypes. Together, our findings provide insights into the molecular mechanisms that underlie PTEN-related neural disorders and highlight novel therapeutic targets.


Subject(s)
Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Neurons , Organoids , PTEN Phosphohydrolase , Humans , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Organoids/metabolism , Neurons/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Mutation/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Signal Transduction , Cell Proliferation , Regulatory-Associated Protein of mTOR/metabolism , Regulatory-Associated Protein of mTOR/genetics , Phenotype
17.
Int J Biol Sci ; 20(7): 2763-2778, 2024.
Article in English | MEDLINE | ID: mdl-38725845

ABSTRACT

Dysregulation of the aldehyde dehydrogenase (ALDH) family has been implicated in various pathological conditions, including cancer. However, a systematic evaluation of ALDH alterations and their therapeutic relevance in hepatocellular carcinoma (HCC) remains lacking. Herein, we found that 15 of 19 ALDHs were transcriptionally dysregulated in HCC tissues compared to normal liver tissues. A four gene signature, including ALDH2, ALDH5A1, ALDH6A1, and ALDH8A1, robustly predicted prognosis and defined a high-risk subgroup exhibiting immunosuppressive features like regulatory T cell (Tregs) infiltration. Single-cell profiling revealed selective overexpression of tumor necrosis factor receptor superfamily member 18 (TNFRSF18) on Tregs, upregulated in high-risk HCC patients. We identified ALDH2 as a tumor suppressor in HCC, with three novel phosphorylation sites mediated by protein kinase C zeta that enhanced enzymatic activity. Mechanistically, ALDH2 suppressed Tregs differentiation by inhibiting ß-catenin/TGF-ß1 signaling in HCC. Collectively, our integrated multi-omics analysis defines an ALDH-Tregs-TNFRSF18 axis that contributes to HCC pathogenesis and represents potential therapeutic targets for this aggressive malignancy.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Carcinoma, Hepatocellular , Liver Neoplasms , T-Lymphocytes, Regulatory , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Humans , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/genetics , Animals , Cell Line, Tumor , Male , Mice , Multiomics
18.
Cell Rep ; 43(6): 114248, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38795350

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) undergoes liquid-liquid phase separation (LLPS) to trigger downstream signaling upon double-stranded DNA (dsDNA) stimulation, and the condensed cGAS colocalizes with stress granules (SGs). However, the molecular mechanism underlying the modulation of cGAS activation by SGs remains elusive. In this study, we show that USP8 is localized to SGs upon dsDNA stimulation and potentiates cGAS-stimulator of interferon genes (STING) signaling. A USP8 inhibitor ameliorates pathological inflammation in Trex1-/- mice. Systemic lupus erythematosus (SLE) databases indicate a positive correlation between USP8 expression and SLE. Mechanistic study shows that the SG protein DDX3X promotes cGAS phase separation and activation in a manner dependent on its intrinsic LLPS. USP8 cleaves K27-linked ubiquitin chains from the intrinsically disordered region (IDR) of DDX3X to enhance its condensation. In conclusion, we demonstrate that USP8 catalyzes the deubiquitination of DDX3X to facilitate cGAS condensation and activation and that inhibiting USP8 is a promising strategy for alleviating cGAS-mediated autoimmune diseases.


Subject(s)
DEAD-box RNA Helicases , Interferon Type I , Nucleotidyltransferases , Stress Granules , Ubiquitin Thiolesterase , Ubiquitination , Humans , Animals , Nucleotidyltransferases/metabolism , Ubiquitin Thiolesterase/metabolism , Mice , DEAD-box RNA Helicases/metabolism , Interferon Type I/metabolism , Stress Granules/metabolism , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Signal Transduction , Mice, Inbred C57BL , HEK293 Cells , Membrane Proteins/metabolism , Mice, Knockout , Exodeoxyribonucleases/metabolism , Endopeptidases , Phosphoproteins , Endosomal Sorting Complexes Required for Transport
19.
J Stroke Cerebrovasc Dis ; 33(7): 107731, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657831

ABSTRACT

BACKGROUND: Several studies report that radiomics provides additional information for predicting hematoma expansion in intracerebral hemorrhage (ICH). However, the comparison of diagnostic performance of radiomics for predicting revised hematoma expansion (RHE) remains unclear. METHODS: The cohort comprised 312 consecutive patients with ICH. A total of 1106 radiomics features from seven categories were extracted using Python software. Support vector machines achieved the best performance in both the training and validation datasets. Clinical factors models were constructed to predict RHE. Receiver operating characteristic curve analysis was used to assess the abilities of non-contrast computed tomography (NCCT) signs, radiomics features, and combined models to predict RHE. RESULTS: We finally selected the top 21 features for predicting RHE. After univariate analysis, 4 clinical factors and 5 NCCT signs were selected for inclusion in the prediction models. In the training and validation dataset, radiomics features had a higher predictive value for RHE (AUC = 0.83) than a single NCCT sign and expansion-prone hematoma. The combined prediction model including radiomics features, clinical factors, and NCCT signs achieved higher predictive performances for RHE (AUC = 0.88) than other combined models. CONCLUSIONS: NCCT radiomics features have a good degree of discrimination for predicting RHE in ICH patients. Combined prediction models that include quantitative imaging significantly improve the prediction of RHE, which may assist in the risk stratification of ICH patients for anti-expansion treatments.


Subject(s)
Cerebral Hemorrhage , Disease Progression , Hematoma , Predictive Value of Tests , Humans , Male , Cerebral Hemorrhage/diagnostic imaging , Hematoma/diagnostic imaging , Female , Aged , Middle Aged , Retrospective Studies , Reproducibility of Results , Radiographic Image Interpretation, Computer-Assisted , Support Vector Machine , Tomography, X-Ray Computed , Prognosis , Risk Factors , Aged, 80 and over
20.
J Med Virol ; 96(4): e29577, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572977

ABSTRACT

Uncovering the immune response to an inactivated SARS-CoV-2 vaccine (In-Vac) and natural infection is crucial for comprehending COVID-19 immunology. Here we conducted an integrated analysis of single-cell RNA sequencing (scRNA-seq) data from serial peripheral blood mononuclear cell (PBMC) samples derived from 12 individuals receiving In-Vac compared with those from COVID-19 patients. Our study reveals that In-Vac induces subtle immunological changes in PBMC, including cell proportions and transcriptomes, compared with profound changes for natural infection. In-Vac modestly upregulates IFN-α but downregulates NF-κB pathways, while natural infection triggers hyperactive IFN-α and NF-κB pathways. Both In-Vac and natural infection alter T/B cell receptor repertoires, but COVID-19 has more significant change in preferential VJ gene, indicating a vigorous immune response. Our study reveals distinct patterns of cellular communications, including a selective activation of IL-15RA/IL-15 receptor pathway after In-Vac boost, suggesting its potential role in enhancing In-Vac-induced immunity. Collectively, our study illuminates multifaceted immune responses to In-Vac and natural infection, providing insights for optimizing SARS-CoV-2 vaccine efficacy.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Leukocytes, Mononuclear , NF-kappa B , SARS-CoV-2 , Vaccines, Inactivated , Immunity , Sequence Analysis, RNA , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL