Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Front Genet ; 15: 1409016, 2024.
Article in English | MEDLINE | ID: mdl-39055259

ABSTRACT

Introduction: Inherited retinal diseases (IRDs) affect ∼4.5 million people worldwide. Elusive pathogenic variants in over 280 genes are associated with one or more clinical forms of IRDs. It is necessary to understand the complex interaction among retinal cell types and pathogenic genes by constructing a regulatory network. In this study, we attempt to establish a panoramic expression view of the cooperative work in retinal cells to understand the clinical manifestations and pathogenic bases underlying IRDs. Methods: Single-cell RNA sequencing (scRNA-seq) data on the retinas from 35 retina samples of 3 species (human, mouse, and zebrafish) including 259,087 cells were adopted to perform a comparative analysis across species. Bioinformatic tools were used to conduct weighted gene co-expression network analysis (WGCNA), single-cell regulatory network analysis, cell-cell communication analysis, and trajectory inference analysis. Results: The cross-species comparison revealed shared or species-specific gene expression patterns at single-cell resolution, such as the stathmin family genes, which were highly expressed specifically in zebrafish Müller glias (MGs). Thirteen gene modules were identified, of which nine were associated with retinal cell types, and Gene Ontology (GO) enrichment of module genes was consistent with cell-specific highly expressed genes. Many IRD genes were identified as hub genes and cell-specific regulons. Most IRDs, especially the retinitis pigmentosa (RP) genes, were enriched in rod-specific regulons. Integrated expression and transcription regulatory network genes, such as congenital stationary night blindness (CSNB) genes GRK1, PDE6B, and TRPM1, showed cell-specific expression and transcription characteristics in either rods or bipolar cells (BCs). IRD genes showed evolutionary conservation (GNAT2, PDE6G, and SAG) and divergence (GNAT2, MT-ND4, and PDE6A) along the trajectory of photoreceptors (PRs) among species. In particular, the Leber congenital amaurosis (LCA) gene OTX2 showed high expression at the beginning of the trajectory of both PRs and BCs. Conclusion: We identified molecular pathways and cell types closely connected with IRDs, bridging the gap between gene expression, genetics, and pathogenesis. The IRD genes enriched in cell-specific modules and regulons suggest that these diseases share common etiological bases. Overall, mining of interspecies transcriptome data reveals conserved transcriptomic features of retinas across species and promising applications in both normal retina anatomy and retina pathology.

2.
J Biol Chem ; 300(3): 105772, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382674

ABSTRACT

Pre-mRNA splicing is a precise regulated process and is crucial for system development and homeostasis maintenance. Mutations in spliceosomal components have been found in various hematopoietic malignancies (HMs) and have been considered as oncogenic derivers of HMs. However, the role of spliceosomal components in normal and malignant hematopoiesis remains largely unknown. Pre-mRNA processing factor 31 (PRPF31) is a constitutive spliceosomal component, which mutations are associated with autosomal dominant retinitis pigmentosa. PRPF31 was found to be mutated in several HMs, but the function of PRPF31 in normal hematopoiesis has not been explored. In our previous study, we generated a prpf31 knockout (KO) zebrafish line and reported that Prpf31 regulates the survival and differentiation of retinal progenitor cells by modulating the alternative splicing of genes involved in mitosis and DNA repair. In this study, by using the prpf31 KO zebrafish line, we discovered that prpf31 KO zebrafish exhibited severe defects in hematopoietic stem and progenitor cell (HSPC) expansion and its sequentially differentiated lineages. Immunofluorescence results showed that Prpf31-deficient HSPCs underwent malformed mitosis and M phase arrest during HSPC expansion. Transcriptome analysis and experimental validations revealed that Prpf31 deficiency extensively perturbed the alternative splicing of mitosis-related genes. Collectively, our findings elucidate a previously undescribed role for Prpf31 in HSPC expansion, through regulating the alternative splicing of mitosis-related genes.


Subject(s)
RNA Splicing Factors , Zebrafish Proteins , Zebrafish , Animals , Embryonic Development , Mutation , RNA Precursors/metabolism , RNA Splicing Factors/metabolism , Stem Cells/metabolism , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/metabolism
3.
Physiol Behav ; 273: 114415, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38000530

ABSTRACT

There is a body of evidence to suggest that chronic stress modulates neurochemical homeostasis, alters neuronal structure, inhibits neurogenesis and contributes to development of mental disorders. Chronic stress-associated mental disorders present common symptoms of cognitive impairment and depression with complex disease mechanisms. P-coumaric acid (p-CA), a natural phenolic compound, is widely distributed in vegetables, cereals and fruits. p-CA exhibits a wide range of health-related effects, including anti-oxidative-stress, anti-mutagenesis, anti-inflammation and anti-cancer activities. The current study aims to evaluate the therapeutic potential of p-CA against stress-associated mental disorders. We assessed the effect of p-CA on cognitive deficits and depression-like behavior in mice exposed to chronic restraint stress (CRS); we used network pharmacology, biochemical and molecular biological approaches to elucidate the underlying molecular mechanisms. CRS exposure caused memory impairments and depression-like behavior in mice; p-CA administration attenuated these CRS-induced memory deficits and depression-like behavior. Network pharmacology analysis demonstrated that p-CA was possibly involved in multiple targets and a variety of signaling pathways. Among them, the protein kinase A (PKA) - cAMP-response element binding protein (CREB) - brain derived neurotrophic factor (BDNF) signaling pathway was predominant and further characterized. The levels of PKA, phosphorylated CREB (pCREB) and BDNF were significantly lowered in the hippocampus of CRS mice, suggesting disruption of the PKA-CREB-BDNF signaling pathway; p-CA treatment restored the signaling pathway. Furthermore, CRS upregulated expression of proinflammatory cytokines in hippocampus, while p-CA reversed the CRS-induced effects. Our findings suggest that p-CA will offer therapeutic benefit to patients with stress-associated mental disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Cyclic AMP Response Element-Binding Protein , Humans , Mice , Animals , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/pharmacology , Signal Transduction , Memory Disorders/metabolism , Hippocampus/metabolism , Stress, Psychological/complications , Stress, Psychological/drug therapy
4.
Front Immunol ; 14: 1274401, 2023.
Article in English | MEDLINE | ID: mdl-37901244

ABSTRACT

Background: Traditional Chinese Medicines have been used for thousands of years but without any sound empirical basis. One such preparation is the Qijudihuang pill (QP), a mixture of eight herbs, that has been used in China for the treatment of various conditions including age-related macular degeneration (AMD), the most common cause of blindness in the aged population. In order to explain the mechanism behind the effect of QP, we used an AMD model of high-fat diet (HFD) fed mice to investigate cholesterol homeostasis, oxidative stress, inflammation and gut microbiota. Methods: Mice were randomly divided into three groups, one group was fed with control diet (CD), the other two groups were fed with high-fat-diet (HFD). One HFD group was treated with QP, both CD and the other HFD groups were treated with vehicles. Tissue samples were collected after the treatment. Cholesterol levels in retina, retinal pigment epithelium (RPE), liver and serum were determined using a commercial kit. The expression of enzymes involved in cholesterol metabolism, inflammation and oxidative stress was measured with qRT-PCR. Gut microbiota was analyzed using 16S rRNA sequencing. Results: In the majority of the lipid determinations, analytes were elevated by HFD but this was reversed by QP. Cholesterol metabolism including the enzymes of bile acid (BA) formation was suppressed by HFD but again this was reversed by QP. BAs play a major role in signaling between host and microbiome and this is disrupted by HFD resulting in major changes in the composition of colonic bacterial communities. Associated with these changes are predictions of the metabolic pathway complexity and abundance of individual pathways. These concerned substrate breakdowns, energy production and the biosynthesis of pro-inflammatory factors but were changed back to control characteristics by QP. Conclusion: We propose that the ability of QP to reverse these HFD-induced effects is related to mechanisms acting to lower cholesterol level, oxidative stress and inflammation, and to modulate gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Macular Degeneration , Animals , Mice , Diet, High-Fat/adverse effects , Medicine, Chinese Traditional , RNA, Ribosomal, 16S , Inflammation , Cholesterol , Macular Degeneration/drug therapy , Macular Degeneration/etiology
5.
iScience ; 26(11): 108103, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37867960

ABSTRACT

DEAH-Box Helicase 38 (DHX38) is a pre-mRNA splicing factor and also a disease-causing gene of autosomal recessive retinitis pigmentosa (arRP). The role of DHX38 in the development and maintenance of the retina remains largely unknown. In this study, by using the dhx38 knockout zebrafish model, we demonstrated that Dhx38 deficiency causes severe differentiation defects and apoptosis of retinal progenitor cells (RPCs) through disrupted mitosis and increased DNA damage. Furthermore, we found a significant accumulation of R-loops in the dhx38-deficient RPCs and human cell lines. Finally, we found that DNA replication stress is the prerequisite for R-loop-induced DNA damage in the DHX38 knockdown cells. Taken together, our study demonstrates a necessary role of DHX38 in the development of retina and reveals a DHX38/R-loop/replication stress/DNA damage regulatory axis that is relatively independent of the known functions of DHX38 in mitosis control.

7.
Front Immunol ; 14: 1177403, 2023.
Article in English | MEDLINE | ID: mdl-37457691

ABSTRACT

Background: Previous studies have suggested that the ratios of immune-inflammatory cells could serve as prognostic indicators in ovarian cancer. However, which of these is the superior prognostic indicator in ovarian cancer remains unknown. In addition, studies on the prognostic value of the platelet to neutrophil ratio (PNR) in ovarian cancer are still limited. Methods: A cohort of 991 ovarian cancer patients was analyzed in the present study. Receiver operator characteristic (ROC) curves were utilized to choose the optimal cut-off values of inflammatory biomarkers such as neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR), systemic immune-inflammation index (SII), and PNR. The correlation of inflammatory biomarkers with overall survival (OS) and relapse-free survival (RFS) was investigated by Kaplan-Meier methods and log-rank test, followed by Cox regression analyses. Results: Kaplan-Meier curves suggested that LMR<3.39, PLR≥181.46, and PNR≥49.20 had obvious associations with worse RFS (P<0.001, P=0.018, P<0.001). Multivariate analysis suggested that LMR (≥3.39 vs. <3.39) (P=0.042, HR=0.810, 95% CI=0.661-0.992) and PNR (≥49.20 vs. <49.20) (P=0.004, HR=1.351, 95% CI=1.103-1.656) were independent prognostic indicators of poor RFS. In addition, Kaplan-Meier curves indicated that PLR≥182.23 was significantly correlated with worse OS (P=0.039). Conclusion: Taken together, PNR and LMR are superior prognostic indicators compared with NLR, PLR, and SII in patients with ovarian cancer.


Subject(s)
Monocytes , Ovarian Neoplasms , Humans , Female , Prognosis , Neutrophils , Neoplasm Recurrence, Local , Lymphocytes , Biomarkers , Inflammation , Ovarian Neoplasms/diagnosis
8.
Metabolites ; 13(6)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37367891

ABSTRACT

Dry eye disease (DED) can be extremely distressing and is common in type 2 diabetes (T2D). To investigate potential biomarkers of DED in T2D, panels of proteins in tears, alongside clinical signs and symptoms of DED, were assessed. Patients were classified into four groups: T2D + DED (n = 47), T2D-only (n = 41), DED-only (n = 17) and healthy controls (n = 17). All patients underwent the Ocular Surface Disease Index (OSDI) and Dry Eye-Related Quality of Life (DEQS) questionnaires, tear evaporation rate (TER), fluorescein tear break-up time (fTBUT), corneal fluorescein staining (CFS) and Schirmer 1 test assessments. Six metabolic proteins and 14 inflammatory cytokines were analyzed with multiplex bead analysis. Interleukin (IL)-6 and IL-8 concentrations in tears were significantly higher in the T2D + DED group, and these biomarkers were positively correlated with CFS. In addition, tear IL-6 was negatively correlated with fTBUT in the T2D + DED group. Clinical signs of DED in the T2D + DED group were similar to the DED-only group. The T2D + DED group had more patients with moderate and severe DED (versus the DED-only group), suggesting a different pathogenesis for DED in T2D versus DED-only. Therefore, IL-6 and IL-8 could potentially be diagnostic biomarkers of DED in T2D.

10.
Physiol Behav ; 266: 114201, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37072048

ABSTRACT

Trans-urocanic acid (UCA), an isomer of cis-UCA that is mainly located in the skin, has recently been reported to have a role in short-term working memory and in the consolidation, reconsolidation and retrieval of long-term memory. However, its effect on memory acquisition remains unclear. In the present study, the effect of UCA on short-term and long-term memory acquisition in mice was investigated using novel object recognition (NOR) and object location recognition (OLR) protocols that each involved three stages: habituation, sampling and testing. UCA was intraperitoneally injected 0.5 h pre-sampling, and the discrimination index during subsequent testing was determined in NOR and OLR tasks. The results showed that 10 mg/kg UCA significantly facilitated short-term and long-term memory acquisition in both types of tasks. Furthermore, 30 mg/kg UCA significantly facilitated long-term memory acquisition in the NOR task and tended to facilitate long-term memory acquisition in the OLR tasks but did not facilitate short-term memory acquisition in either task. Additionally, the enhancing role of UCA on memory acquisition was not dependent on changes of nonspecific responses, e.g. exploratory behavior and locomotor activity. The current study suggests that UCA facilitates short-term and long-term recognition memory acquisition, which further extends the functional role of UCA in the brain function.


Subject(s)
Urocanic Acid , Mice , Animals , Ultraviolet Rays , Skin , Isomerism , Memory, Long-Term
12.
Cells ; 11(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36496991

ABSTRACT

Depression is a complex mental disorder, affecting approximately 280 million individuals globally. The pathobiology of depression is not fully understood, and the development of new treatments is urgently needed. Dihydromyricetin (DHM) is a natural flavanone, mainly distributed in Ampelopsis grossedentata. DHM has demonstrated a protective role against cardiovascular disease, diabetes, liver disease, cancer, kidney injury and neurodegenerative disorders. In the present study, we examined the protective effect of DHM against depression in a chronic depression mouse model induced by corticosterone (CORT). Animals exposed to CORT displayed depressive-like behaviors; DHM treatment reversed these behaviors. Network pharmacology analyses showed that DHM's function against depression involved a wide range of targets and signaling pathways, among which the inflammation-linked targets and signaling pathways were critical. Western blotting showed that CORT-treated animals had significantly increased levels of the advanced glycation end product (AGE) and receptor of AGE (RAGE) in the hippocampus, implicating activation of the AGE-RAGE signaling pathway. Furthermore, enzyme-linked immunosorbent assay (ELISA) detected a marked increase in the production of proinflammatory cytokines, interleukin-1 beta (IL-1ß), IL-6 and tumor necrosis factor-alpha (TNFα) in the hippocampus of CORT-treated mice. DHM administration significantly counteracted these CORT-induced changes. These findings suggest that protection against depression by DHM is mediated by suppression of neuroinflammation, predominantly via the AGE-RAGE signaling pathway.


Subject(s)
Glycation End Products, Advanced , Signal Transduction , Animals , Mice , Glycation End Products, Advanced/pharmacology , Cytokines/metabolism , Inflammation/drug therapy , Disease Models, Animal
13.
Cell Death Dis ; 13(11): 962, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396940

ABSTRACT

Mutations in TUB-like protein 1 (TULP1) are associated with severe early-onset retinal degeneration in humans. However, the pathogenesis remains largely unknown. There are two homologous genes of TULP1 in zebrafish, namely tulp1a and tulp1b. Here, we generated the single knockout (tulp1a-/- and tulp1b-/-) and double knockout (tulp1-dKO) models in zebrafish. Knockout of tulp1a resulted in the mislocalization of UV cone opsins and the degeneration of UV cones specifically, while knockout of tulp1b resulted in mislocalization of rod opsins and rod-cone degeneration. In the tulp1-dKO zebrafish, mislocalization of opsins was present in all types of photoreceptors, and severe degeneration was observed at a very early age, mimicking the clinical manifestations of TULP1 patients. Photoreceptor cilium length was significantly reduced in the tulp1-dKO retinas. RNA-seq analysis showed that the expression of tektin2 (tekt2), a ciliary and flagellar microtubule structural component, was downregulated in the tulp1-dKO zebrafish. Dual-luciferase reporter assay suggested that Tulp1a and Tulp1b transcriptionally activate the promoter of tekt2. In addition, ferroptosis might be activated in the tulp1-dKO zebrafish, as suggested by the up-regulation of genes related to the ferroptosis pathway, the shrinkage of mitochondria, reduction or disappearance of mitochondria cristae, and the iron and lipid droplet deposition in the retina of tulp1-dKO zebrafish. In conclusion, our study establishes an appropriate zebrafish model for TULP1-associated retinal degeneration and proposes that loss of TULP1 causes defects in cilia structure and opsin trafficking through the downregulation of tekt2, which further increases the death of photoreceptors via ferroptosis. These findings offer insight into the pathogenesis and clinical treatment of early-onset retinal degeneration.


Subject(s)
Ferroptosis , Retinal Degeneration , Animals , Humans , Retinal Degeneration/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Eye Proteins/metabolism , Photoreceptor Cells, Vertebrate/metabolism
16.
Curr Eye Res ; 47(10): 1450-1462, 2022 10.
Article in English | MEDLINE | ID: mdl-35947018

ABSTRACT

PURPOSE: Age-related macular degeneration (AMD) is the commonest cause of permanent vision loss in the elderly. Traditional Chinese medicine (TCM) has long been used to treat AMD, although the underlying functional mechanisms are not understood. This study aims to predict the active ingredients through screening the chemical ingredients of anti-AMD decoction and to elucidate the underlying mechanisms. METHODS: We collected the prescriptions for effective AMD treatment with traditional Chinese medicine and screened several Chinese medicines that were used most frequently in order to compose "anti-AMD decoction." The pharmacologically active ingredients and corresponding targets in this anti-AMD decoction were mined using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Subsequently, the AMD-related targets were identified through the GeneCards database. Network pharmacology was performed to construct the visual network of anti-AMD decoction-AMD protein-protein interaction (PPI). Further, the Autodock software was adopted for molecular docking on the core active ingredients and core targets. The function of core ingredients against oxidative stress and inflammation in retinal pigment epithelial cells was assessed using biochemical assays. RESULTS: We screened out 268 active ingredients in anti-AMD decoction corresponding to 258 ingredient targets, combined with 2160 disease targets in AMD, and obtained 129 drug-disease common targets. The key core proteins were predominantly involved in inflammation. Furthermore, molecular docking showed that four potential active ingredients (Quercetin, luteolin, naringenin and hederagenin) had good affinity with the core proteins, IL-6, TNF, VEGFA and MAPK3. Quercetin, luteolin and naringenin demonstrated capacities against oxidative stress and inflammation in human retinal pigment epithelial cells. CONCLUSIONS: The data suggests that anti-AMD decoction has multiple functional components and targets in treating AMD, possibly mediated by suppression of oxidative stress and inflammation.


Subject(s)
Drugs, Chinese Herbal , Macular Degeneration , Aged , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Inflammation/drug therapy , Interleukin-6 , Luteolin , Macular Degeneration/drug therapy , Medicine, Chinese Traditional , Molecular Docking Simulation , Quercetin , Retinal Pigments
17.
Int J Mol Med ; 50(1)2022 Jul.
Article in English | MEDLINE | ID: mdl-35593308

ABSTRACT

Ischemic injuries result from ischemia and hypoxia in cells. Tissues and organs receive an insufficient supply of nutrients and accumulate metabolic waste, which leads to the development of inflammation, fibrosis and a series of other issues. Ischemic injuries in the brain, heart, kidneys, lungs and other organs can cause severe adverse effects. Acute renal ischemia induces acute renal failure, heart ischemia induces myocardial infarction and cerebral ischemia induces cerebrovascular accidents, leading to loss of movement, consciousness and possibly, life­threatening disabilities. Existing evidence suggests that long non­coding RNAs (lncRNAs) are regulatory sequences involved in transcription, post­transcription, epigenetic regulation and multiple physiological processes. lncRNAs have been shown to be differentially expressed following ischemic injury, with the severity of the ischemic injury being affected by the upregulation or downregulation of certain types of lncRNA. The present review article provides an extensive summary of the functional roles of lncRNAs in ischemic injury, with a focus on the brain, heart, kidneys and lungs. The present review mainly summarizes the functional roles of lncRNA MALAT1, lncRNA MEG3, lncRNA H19, lncRNA TUG1, lncRNA NEAT1, lncRNA AK139328 and lncRNA CAREL, among which lncRNA MALAT1, in particular, plays a crucial role in ischemic injury and is currently a hot research topic.


Subject(s)
Brain Ischemia , RNA, Long Noncoding , Stroke , Brain Ischemia/genetics , Epigenesis, Genetic , Humans , Ischemia , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stroke/genetics
18.
Cells ; 11(10)2022 05 10.
Article in English | MEDLINE | ID: mdl-35626632

ABSTRACT

Depression, a mood disorder, affects one in fifteen adults, has multiple risk factors and is associated with complicated underlying pathological mechanisms. P-coumaric acid (p-CA), a phenolic acid, is widely distributed in vegetables, fruits and mushrooms. P-CA has demonstrated a protective role against oxidative stress and inflammation in various diseases, including cardiovascular disease, diabetes and cancer. In the current study, we investigated the protection of p-CA against depression and memory impairment in a corticosterone (CORT)-induced chronic depressive mouse model. CORT administration resulted in depression-like behaviors and memory impairment. P-CA treatment alleviated CORT-induced depression-related behaviors and memory impairment. Network pharmacology predicted that p-CA had multiple targets and mediated various signaling pathways, of which inflammation-associated targets and signaling pathways are predominant. Western blotting showed CORT-induced activation of the advanced glycation end product (AGE)-receptor of AGE (RAGE) (AGE-RAGE) signaling and increased expression of the proinflammatory cytokines interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNFα) in the hippocampus, while p-CA treatment inactivated AGE-RAGE signaling and decreased the levels of IL-1ß and TNFα, suggesting that protection against depression and memory impairment by p-CA is mediated by the inhibition of inflammation, mainly via the AGE-RAGE signaling pathway. Our data suggest that p-CA treatment will benefit patients with depression.


Subject(s)
Glycation End Products, Advanced , Receptor for Advanced Glycation End Products/metabolism , Tumor Necrosis Factor-alpha , Animals , Coumaric Acids , Depression/drug therapy , Humans , Inflammation/drug therapy , Inflammation/metabolism , Memory Disorders/drug therapy , Mice , Neuroinflammatory Diseases , Tumor Necrosis Factor-alpha/metabolism
19.
Curr Med Chem ; 29(40): 6141-6158, 2022.
Article in English | MEDLINE | ID: mdl-35546762

ABSTRACT

Age-related macular degeneration (AMD) is a complex disease that mainly affects people over 50 years of age. Even though management of the vascularisation associated with the "wet" form of AMD is effective using anti-VEGF drugs, there is currently no treatment for the "dry" form of AMD. Given this, it is imperative to develop methods for disease prevention and treatment. For this review, we searched scientific articles via PubMed and Google Scholar, and considered the impact of nutrients, specific dietary patterns, and probiotics on the incidence and progression of AMD. Many studies revealed that regular consumption of foods that contain ω-3 fatty acids is associated with a lower risk for late AMD. Particular dietary patterns, such as the Mediterranean diet that contains ω-3 FAs-rich foods (nuts, olive oil, and fish), seem to be protective against AMD progression compared to Western diets that are rich in fats and carbohydrates. Furthermore, randomized controlled trials that investigated the role of nutrient supplementation in AMD have shown that treatment with antioxidants, such as lutein/zeaxanthin, zinc, and carotenoids, may be effective against AMD progression. More recent studies have investigated the association of the antioxidant properties of gut bacteria, such as Bacteroides and Eysipelotrichi, with lower AMD risk in individuals whose microbiota is enriched with them. These are promising fields of research that may yield the capacity to improve the quality of life for millions of people, allowing them to live with a clear vision for longer and avoiding the high cost of vision-saving surgery.


Subject(s)
Fatty Acids, Omega-3 , Macular Degeneration , Probiotics , Antioxidants/therapeutic use , Carbohydrates , Carotenoids/therapeutic use , Dietary Supplements , Fatty Acids, Omega-3/therapeutic use , Humans , Lutein/therapeutic use , Macular Degeneration/drug therapy , Macular Degeneration/prevention & control , Nutrients , Olive Oil/therapeutic use , Probiotics/therapeutic use , Quality of Life , Zeaxanthins/therapeutic use , Zinc
20.
Toxicology ; 473: 153209, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35577138

ABSTRACT

Okadaic acid (OA, C44H68O13) is a neurotoxin and phosphatase inhibitor produced by several dinoflagellate species. OA is widely known to accumulate in black sponges and is associated with seafood poisoning. Humans can be exposed to OA by consuming contaminated shellfish that have accumulated toxins during algal blooms. Evidence from in vitro and in vivo studies demonstrate that OA exposure causes neurotoxicity in addition to diarrheal syndrome. It is unclear whether exposure to OA affects retinal function, a part of the central nervous system. We evaluated the toxicity of OA in human retinal pigment epithelial cells (ARPE-19) and in zebrafish retinas. Cell-based assays determined that OA significantly decreased cell viability in a dose-dependent manner and increased oxidative stress, inflammation and cell death compared to the untreated control group. In the in vivo study, zebrafish embryos at 24 h post fertilization (hpf) were treated with/without OA for four days, endpoint measurements including mortality, malformations, delayed hatching, altered heartbeat and reduced movement were performed. OA exposure increased mortality, decreased hatching, heartbeat rate, and caused morphological abnormalities. OA exposure also markedly decreased the expression of antioxidant genes and a significantly increased inflammation as well as evoking a loss of photoreceptors in zebrafish embryos. The data suggest that consuming OA-contaminated seafood can induce retinal toxicity.


Subject(s)
Oxidative Stress , Zebrafish , Animals , Humans , Inflammation , Okadaic Acid/toxicity , Retina
SELECTION OF CITATIONS
SEARCH DETAIL