Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 844
Filter
1.
Alzheimers Dement ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747519

ABSTRACT

INTRODUCTION: This study addresses the urgent need for non-invasive early-onset Alzheimer's disease (EOAD) prediction. Using optical coherence tomography angiography (OCTA), we present a choriocapillaris model sensitive to EOAD, correlating with serum biomarkers. METHODS: Eighty-four EOAD patients and 73 controls were assigned to swept-source OCTA (SS-OCTA) or the spectral domain OCTA (SD-OCTA) cohorts. Our hypothesis on choriocapillaris predictive potential in EOAD was tested and validated in these two cohorts. RESULTS: Both cohorts revealed diminished choriocapillaris signals, demonstrating the highest discriminatory capability (area under the receiver operating characteristic curve: SS-OCTA 0.913, SD-OCTA 0.991; P < 0.001). A sparser SS-OCTA choriocapillaris correlated with increased serum amyloid beta (Aß)42, Aß42/40, and phosphorylated tau (p-tau)181 levels (all P < 0.05). Apolipoprotein E status did not affect choriocapillaris measurement. DISCUSSION: The choriocapillaris, observed in both cohorts, proves sensitive to EOAD diagnosis, and correlates with serum Aß and p-tau181 levels, suggesting its potential as a diagnostic tool for identifying and tracking microvascular changes in EOAD. HIGHLIGHTS: Optical coherence tomography angiography may be applied for non-invasive screening of Alzheimer's disease (AD). Choriocapillaris demonstrates high sensitivity and specificity for early-onset AD diagnosis. Microvascular dynamics abnormalities are associated with AD.

2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732153

ABSTRACT

Inflammation is closely associated with cerebrovascular diseases, cardiovascular diseases, diabetes, and cancers, and it is accompanied by the development of autoantibodies in the early stage of inflammation-related diseases. Hence, it is meaningful to discover novel antibody biomarkers targeting inflammation-related diseases. In this study, Jumonji C-domain-containing 6 (JMJD6) was identified by the serological identification of antigens through recombinant cDNA expression cloning. In particular, JMJD6 is an antigen recognized in serum IgG from patients with unstable angina pectoris (a cardiovascular disease). Then, the serum antibody levels were examined using an amplified luminescent proximity homogeneous assay-linked immunosorbent assay and a purified recombinant JMJD6 protein as an antigen. We observed elevated levels of serum anti-JMJD6 antibodies (s-JMJD6-Abs) in patients with inflammation-related diseases such as ischemic stroke, acute myocardial infarction (AMI), diabetes mellitus (DM), and cancers (including esophageal cancer, EC; gastric cancer; lung cancer; and mammary cancer), compared with the levels in healthy donors. The s-JMJD6-Ab levels were closely associated with some inflammation indicators, such as C-reactive protein and intima-media thickness (an atherosclerosis index). A better postoperative survival status of patients with EC was observed in the JMJD6-Ab-positive group than in the negative group. An immunohistochemical analysis showed that JMJD6 was highly expressed in the inflamed mucosa of esophageal tissues, esophageal carcinoma tissues, and atherosclerotic plaques. Hence, JMJD6 autoantibodies may reflect inflammation, thereby serving as a potential biomarker for diagnosing specific inflammation-related diseases, including stroke, AMI, DM, and cancers, and for prediction of the prognosis in patients with EC.


Subject(s)
Autoantibodies , Biomarkers , Inflammation , Jumonji Domain-Containing Histone Demethylases , Humans , Autoantibodies/immunology , Autoantibodies/blood , Biomarkers/blood , Inflammation/immunology , Inflammation/blood , Female , Jumonji Domain-Containing Histone Demethylases/immunology , Jumonji Domain-Containing Histone Demethylases/metabolism , Male , Middle Aged , Neoplasms/immunology , Neoplasms/diagnosis , Neoplasms/blood , Aged , Adult , Diabetes Mellitus/immunology , Diabetes Mellitus/blood
3.
J Am Heart Assoc ; 13(10): e034145, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38761086

ABSTRACT

BACKGROUND: This study aims to investigate the temporal and spatial patterns of structural brain injury related to deep medullary veins (DMVs) damage. METHODS AND RESULTS: This is a longitudinal analysis of the population-based Shunyi cohort study. Baseline DMVs numbers were identified on susceptibility-weighted imaging. We assessed vertex-wise cortex maps and diffusion maps at both baseline and follow-up using FSL software and the longitudinal FreeSurfer analysis suite. We performed statistical analysis of global measurements and voxel/vertex-wise analysis to explore the relationship between DMVs number and brain structural measurements. A total of 977 participants were included in the baseline, of whom 544 completed the follow-up magnetic resonance imaging (age 54.97±7.83 years, 32% men, mean interval 5.56±0.47 years). A lower number of DMVs was associated with a faster disruption of white matter microstructural integrity, presented by increased mean diffusivity and radial diffusion (ß=0.0001 and SE=0.0001 for both, P=0.04 and 0.03, respectively), in extensive deep white matter (threshold-free cluster enhancement P<0.05, adjusted for age and sex). Of particular interest, we found a bidirectional trend association between DMVs number and change in brain volumes. Specifically, participants with mild DMVs disruption showed greater cortical enlargement, whereas those with severe disruption exhibited more significant brain atrophy, primarily involving clusters in the frontal and parietal lobes (multiple comparison corrected P<0.05, adjusted for age, sex, and total intracranial volume). CONCLUSIONS: Our findings posed the dynamic pattern of brain parenchymal lesions related to DMVs injury, shedding light on the interactions and chronological roles of various pathological mechanisms.


Subject(s)
Cerebral Veins , Humans , Male , Female , Middle Aged , Cerebral Veins/diagnostic imaging , Cerebral Veins/pathology , Longitudinal Studies , China/epidemiology , White Matter/diagnostic imaging , White Matter/pathology , Adult , Aged
4.
Cancer Sci ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634426

ABSTRACT

Given that esophageal cancer is highly malignant, the discovery of novel prognostic markers is eagerly awaited. We performed serological identification of antigens by recombinant cDNA expression cloning (SEREX) and identified SKI proto-oncogene protein and transmembrane p24 trafficking protein 5 (TMED5) as antigens recognized by serum IgG antibodies in patients with esophageal carcinoma. SKI and TMED5 proteins were expressed in Escherichia coli, purified by affinity chromatography, and used as antigens. The serum anti-SKI antibody (s-SKI-Ab) and anti-TMED5 antibody (s-TMED5-Ab) levels were significantly higher in 192 patients with esophageal carcinoma than in 96 healthy donors. The presence of s-SKI-Abs and s-TMED5-Abs in the patients' sera was confirmed by western blotting. Immunohistochemical staining showed that the TMED5 protein was highly expressed in the cytoplasm and nuclear compartments of the esophageal squamous cell carcinoma tissues, whereas the SKI protein was localized predominantly in the nuclei. Regarding the overall survival in 91 patients who underwent radical surgery, the s-SKI-Ab-positive and s-TMED5-Ab-negative statuses were significantly associated with a favorable prognosis. Additionally, the combination of s-SKI-Ab-positive and s-TMED5-Ab-negative cases showed an even clearer difference in overall survival as compared with that of s-SKI-Ab-negative and s-TMED5-Ab-positive cases. The s-SKI-Ab and s-TMED5-Ab biomarkers are useful for diagnosing esophageal carcinoma and distinguishing between favorable and poor prognoses.

5.
Int J Nanomedicine ; 19: 3387-3404, 2024.
Article in English | MEDLINE | ID: mdl-38617801

ABSTRACT

Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Programmed Cell Death 1 Receptor , Immunotherapy , Drug Delivery Systems , CD8-Positive T-Lymphocytes , Neoplasms/drug therapy
6.
Chin Med J (Engl) ; 137(10): 1151-1159, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38557962

ABSTRACT

ABSTRACT: Metastasis-associated lung adenocarcinoma transcript 1 ( MALAT1 ) is a well-established oncogenic long non-coding RNA, the higher expression of which is strongly correlated with cancer events such as tumorigenesis, progression, metastasis, drug resistance, and treatment outcome in solid cancers. Recently, a series of studies has highlighted its potential role in hematological malignancies in terms of these events. Similar to solid cancers, MALAT1 can regulate various target genes via sponging and epigenetic mechanisms, but the miRNAs sponged by MALAT1 differ from those identified in solid cancers. In this review, we systematically describe the role and underlying mechanisms of MALAT1 in multiple types of hematological malignancies, including regulation of cell proliferation, metastasis, stress response, and glycolysis. Clinically, MALAT1 expression is related to poor treatment outcome and drug resistance, therefore exhibiting potential prognostic value in multiple myeloma, lymphoma, and leukemia. Finally, we discuss the evaluation of MALAT1 as a novel therapeutic target against cancer in preclinical studies.


Subject(s)
Hematologic Neoplasms , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Cell Proliferation/genetics , MicroRNAs/genetics
7.
Discov Med ; 36(183): 678-689, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665017

ABSTRACT

BACKGROUND: An imbalance in energy metabolism serves as a causal factor for type 2 diabetes (T2D). Although metformin has been known to ameliorate the overall energy metabolism imbalance, but the direct correlation between metformin and central carbon metabolism (CCM) has not been thoroughly investigated. In this study, we employed a high-performance ion chromatography-tandem mass spectrometry (HPIC-MS/MS) technique to examine the alterations and significance of CCM both before and after metformin treatment for T2D. METHODS: We recruited 29 participants, comprising 10 individuals recently diagnosed with T2D (T2D group). Among these, 10 patients underwent a 4-6-week treatment with metformin (MET group). Additionally, we included 9 healthy subjects (CON group). Employing HPIC-MS/MS, we quantitatively analyzed 56 metabolites across 18 biologically relevant metabolic pathways associated with CCM. Univariate and multivariate statistical analyses were utilized to identify differential metabolites. Subsequently, correlation analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted on the identified differential metabolites. RESULTS: We identified seven distinct metabolites in individuals with T2D (p < 0.05). Notably, cyclic 3',5'-Adenosine MonoPhosphate (AMP), Glucose 6-phosphate, L-lactic acid, Maleic acid, and Malic acid exhibited a reversal to normal levels following metformin treatment. Furthermore, Malic acid demonstrated a positive correlation with L-lactic acid (r = 0.94, p < 0.05), as did succinic acid with malic acid (r = 0.81, p < 0.05), L-lactic acid with succinic acid (r = 0.78, p < 0.05), and L-lactic acid with glucose-6-phosphate (r = 0.72, p < 0.05). These metabolites were notably enriched in pyruvate metabolism (p = 0.005), tricarboxylic acid cycle (TCA) (p = 0.007), propanoate metabolism (p = 0.007), and glycolysis or gluconeogenesis (p = 0.009), respectively. CONCLUSIONS: We employed HPIC-MS/MS to uncover alterations in CCM among individuals recently diagnosed with T2D before and after metformin treatment. The findings suggest that metformin may ameliorate the energy metabolism imbalance in T2D by reducing intermediates within the CCM pathway.


Subject(s)
Carbon , Diabetes Mellitus, Type 2 , Metformin , Tandem Mass Spectrometry , Humans , Metformin/therapeutic use , Metformin/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Male , Middle Aged , Female , Carbon/metabolism , Tandem Mass Spectrometry/methods , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Aged , Adult , Metabolic Networks and Pathways/drug effects , Energy Metabolism/drug effects
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124226, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38560950

ABSTRACT

Organophosphorus pesticides play an important role as broad-spectrum inactivating herbicides in agriculture. Developing a method for rapid and efficient organophosphorus pesticides detection is still urgent due to the increasing concern on food safety. An organo-probe (ZDA), synthesized by purine hydrazone derivative and 2,2'-dipyridylamine derivative, was applied in sensitive recognition of Cu2+ with detection limit of 300 nM. Mechanism study via density functional theory (DFT) and job's plot experiment revealed that ZDA and Cu2+ ions form a 1:2 complex quenching the fluorescence emission. Moreover, this fluorescent complex ZDA-Cu2+ was applicable for detecting glyphosate and glufosinate ammonium following fluorescence enhancement mechanism, with detection limits of 11.26 nM and 11.5 nM, respectively. Meanwhile, ZDA-Cu2+ was effective and sensitive when it is used for pesticide detection, reaching the maximum value and stabilizing in 1 min. Finally, the ZDA-Cu2+ probe could also be tolerated in cell assay environment, implying potential bio-application.


Subject(s)
Aminobutyrates , Glyphosate , Pesticides , Organophosphorus Compounds , Fluorescence , Fluorescent Dyes , Purines , Spectrometry, Fluorescence , Copper
10.
Int Immunopharmacol ; 131: 111823, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38508094

ABSTRACT

This study aims to explore the relationship between serum iron by inductively coupled plasma-mass spectrometry (ICP-MS) and the efficacy of immune checkpoint inhibitors (ICIs) and potential mechanism. Totally 113 patients from 233 patients with advanced metastatic lung cancer, esophageal cancer, gastric cancer and colorectal cancer who treated with immunotherapy in Shandong Provincial Hospital were divided into training group (n=68) and validation group (n=45), whose patients were divided into clinical benefit response (CBR) and non-clinical benefit (NCB) by RECIST (v1.1) respectively. We found for the first time that high serum iron level (>1036 µg/L) was a novel biomarker of better PFS (10.13 months vs 7.37 months; p = 0.0015) and OS(16.00 months vs 11.00 months; p = 0.0235) by ROC curve (sensitivity: 78.13 %; Specificity: 80.56 %; p < 0.0001) of CBR (n=32) and NCB (n=36) patients in training group. Interestingly, consistently stable and high serum iron level predicted better efficacy during immunotherapy. Noteworthy, the predictive efficacy of PD-L1 expression was significantly inferior than serum iron (accuracy:63.49% vs 79.41%, p=0.0432), while serum iron detected by spectrophotometry did not predict the efficacy of immunotherapy (p=0.0671) indicating higher sensitivity of ICP-MS. Bioinformatics analysis showed that serum iron could enhance innate immunity and cytokine release and was verified by proteomics that KEGG and GO analysis enriched innate immune and cytokine signaling pathways. Flow cytometry showed that IL-17 (p=0.0002) increased and IL-6 (p=0.0112) decreased after immunotherapy. Based on this, Nomogram with better prediction was constructed by multiple clinical and independent factors. Our results revealed that serum iron is positively associated with ICIs efficacy by enhancing innate immunity and cytokine release in advanced metastatic cancers, and can be a biomarker for predicting ICIs response.


Subject(s)
Lung Neoplasms , Programmed Cell Death 1 Receptor , Humans , Biomarkers , Cytokines , Immunotherapy , Iron , Lung Neoplasms/drug therapy
11.
Heliyon ; 10(6): e28161, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545213

ABSTRACT

Low-carbon travel assumes paramount significance in energy conservation and the establishment of an eco-friendly transportation ecosystem. This paper endeavors to explore the relationship between low-carbon travel intention, latent psychological variables, and sociodemographic attributes, drawing insights from responses of 602 residents in Hangzhou, China by structural equation model and multi-group model. In particular, we synthesize the theory of planned behavior, value-belief-norm theory, and view of incentive, a reflection of the public support for incentive policies. Results reveals that the primary determinants influencing the low-carbon travel intention encompass the view of incentive, attitude, and subjective norms. Individuals with diverse sociodemographic attributes manifest varying sensitivities, with males and elders exhibiting heightened responsiveness to incentive, while the presence of children decrease the attraction of incentive. These findings demonstrate that low-carbon travel intention can be increased by three ways, one is by the strong attraction of incentive especially tailor incentive policy, another is by making family-friendly policies to facilitate travel for groups with children, and the last is by improving the quality of low-carbon travel services thus increasing the attitude and other determinants.

12.
Oncol Rep ; 51(5)2024 May.
Article in English | MEDLINE | ID: mdl-38456515

ABSTRACT

After the publication of the article, an interested reader drew to the authors' attention that, in the western blots shown in Fig. 5C and D, a pair of data panels were inadvertently duplicated comparing between panels (C) and (D); in addition, the cell migration data shown in Fig. 7F on p. 1852 were selected incorrectly. The authors have examined their original data, and realize that these errors arose inadvertently as a consequence of their mishandling of their data. The revised versions of Figs. 5 and 7, featuring the corrected data for the caspase-8 experiment in Fig. 5C and alternative data for the cell migration assay experiments in Fig. 7F, are shown on the next two pages. The revised data shown for these Figures do not affect the overall conclusions reported in the paper. All the authors agree to the publication of this corrigendum, and are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this. Furthermore, the authors apologize to the readership for any inconvenience caused. [Oncology Reports 40: 1843-1854, 2018; DOI: 10.3892/or.2018.6593].

13.
Int J Nanomedicine ; 19: 2755-2772, 2024.
Article in English | MEDLINE | ID: mdl-38525008

ABSTRACT

Purpose: The drug resistance and low response rates of immunotherapy limit its application. This study aimed to construct a new nanoparticle (CaCO3-polydopamine-polyethylenimine, CPP) to effectively deliver interleukin-12 (IL-12) and suppress cancer progress through immunotherapy. Methods: The size distribution of CPP and its zeta potential were measured using a Malvern Zetasizer Nano-ZS90. The morphology and electrophoresis tentative delay of CPP were analyzed using a JEM-1400 transmission electron microscope and an ultraviolet spectrophotometer, respectively. Cell proliferation was analyzed by MTT assay. Proteins were analyzed by Western blot. IL-12 and HMGB1 levels were estimated by ELISA kits. Live/dead staining assay was performed using a Calcein-AM/PI kit. ATP production was detected using an ATP assay kit. The xenografts in vivo were estimated in C57BL/6 mice. The levels of CD80+/CD86+, CD3+/CD4+ and CD3+/CD8+ were analyzed by flow cytometry. Results: CPP could effectively express EGFP or IL-12 and increase ROS levels. Laser treatment promoted CPP-IL-12 induced the number of dead or apoptotic cell. CPP-IL-12 and laser could further enhance CALR levels and extracellular HMGB1 levels and decrease intracellular HMGB1 and ATP levels, indicating that it may induce immunogenic cell death (ICD). The tumors and weights of xenografts in CPP-IL-12 or laser-treated mice were significantly reduced than in controls. The IL-12 expression, the CD80+/CD86+ expression of DC from lymph glands, and the number of CD3+/CD8+T or CD3+/CD4+T cells from the spleen increased in CPP-IL-12-treated or laser-treated xenografts compared with controls. The levels of granzyme B, IFN-γ, and TNF-α in the serum of CPP-IL-12-treated mice increased. Interestingly, CPP-IL-12 treatment in local xenografts in the back of mice could effectively inhibit the growth of the distant untreated tumor. Conclusion: The novel CPP-IL-12 could overexpress IL-12 in melanoma cells and achieve immunotherapy to melanoma through inducing ICD, activating CD4+ T cell, and enhancing the function of tumor-reactive CD8+ T cells.


Subject(s)
HMGB1 Protein , Melanoma , Humans , Mice , Animals , Interleukin-12 , CD8-Positive T-Lymphocytes , Melanoma/therapy , Melanoma/metabolism , HMGB1 Protein/metabolism , Immunogenic Cell Death , Mice, Inbred C57BL , Cell Proliferation , CD4-Positive T-Lymphocytes , Adenosine Triphosphate/metabolism
14.
J Am Heart Assoc ; 13(4): e032668, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38348813

ABSTRACT

BACKGROUND: It is uncertain whether rare NOTCH3 variants are associated with stroke and dementia in the general population and whether they lead to alterations in cognitive function. This study aims to determine the associations of rare NOTCH3 variants with prevalent and incident stroke and dementia, as well as cognitive function changes. METHODS AND RESULTS: In the prospective community-based Shunyi Study, a total of 1007 participants were included in the baseline analysis. For the follow-up analysis, 1007 participants were included in the stroke analysis, and 870 participants in the dementia analysis. All participants underwent baseline brain magnetic resonance imaging, carotid ultrasound, and whole exome sequencing. Rare NOTCH3 variants were defined as variants with minor allele frequency <1%. A total of 137 rare NOTCH3 carriers were enrolled in the baseline study. At baseline, rare NOTCH3 variant carriers had higher rates of stroke (8.8% versus 5.6%) and dementia (2.9% versus 0.8%) compared with noncarriers. After adjustment for associated risk factors, the epidermal growth factor-like repeats (EGFr)-involving rare NOTCH3 variants were associated with a higher risk of prevalent stroke (odds ratio [OR], 2.697 [95% CI, 1.266-5.745]; P=0.040) and dementia (OR, 8.498 [95% CI, 1.727-41.812]; P=0.032). After 5 years of follow-up, we did not find that the rare NOTCH3 variants increased the risk of incident stroke and dementia. There was no statistical difference in the change in longitudinal cognitive scale scores. CONCLUSIONS: Rare NOTCH3 EGFr-involving variants are genetic risk factors for stroke and dementia in the general Chinese population.


Subject(s)
Dementia , Stroke , Humans , Prospective Studies , Stroke/epidemiology , Stroke/genetics , Stroke/pathology , Brain/pathology , Magnetic Resonance Imaging , Dementia/epidemiology , Dementia/genetics , ErbB Receptors , Receptor, Notch3/genetics
16.
Ther Clin Risk Manag ; 20: 39-45, 2024.
Article in English | MEDLINE | ID: mdl-38344195

ABSTRACT

Background: Sharp esophageal foreign body (SEFB) impaction can cause varying degrees of damage to the esophagus. There are few studies analyzing the postoperative fasting time in SEFB patients. Methods: We retrospectively collected 835 SEFB patients. According to the fasting time after the endoscopic removal (ER) of SEFBs, the patients were divided into two groups: short fasting time (SFT, fasted ≤24 h) and long fasting time (LFT, fasted >24 h). Results: There were 216 and 619 patients in the SFT and LFT group, respectively. The average age of the SFT group (52.97 years) was younger than that of the LFT group (55.96 years) (p = 0.025). The LFT group had lower proportion of duration of impaction (DOI) within 12 hours (14.2% vs 22.2%, p = 0.006) and erosion rates (89.0% vs 94.0%, p = 0.034) as well as higher proportion of esophageal perforation (19.5 vs 6.5%, p = 0.010) and patients who got intravenous anesthesia (63.78% vs 31.9%, p = 0.000) than the SFT group. The longest diameter of the foreign body (Lmax) in the LFT group (2.60 ± 1.01 cm) was greater than that in the SFT group (2.41 ± 0.83 cm; p = 0.01). Multivariate regression analysis found that age (OR = 1.726[1.208-2.465], p = 0.003), DOI (OR = 1.793[1.175-2.737], p = 0.007), Lmax (OR = 1.477[1.033-2.111], p = 0.032), perforation (OR = 3.698[2.038-6.710]; p < 0.01) and intravenous anesthesia (OR = 3.734[2.642-5.278]; p < 0.01) were the independent factors that prolonged fasting time in patients with SEFBs, while esophageal mucosal erosion (OR = 0.433[0.229-0.820]; p = 0.01) was the influencing factor leading to shortened fasting time. Conclusion: For the first time, we analyzed factors influencing the fasting time after ER in SEFB patients. Age, DOI, Lmax, perforation and intravenous anesthesia were risk factors for a prolonged postoperative fasting time.

17.
Commun Biol ; 7(1): 215, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383737

ABSTRACT

Blocking immune checkpoint CD47/SIRPα is a useful strategy to engineer macrophages for cancer immunotherapy. However, the roles of CD47-related noncoding RNA in regulating macrophage phagocytosis for lung cancer therapy remain unclear. This study aims to investigate the effects of long noncoding RNA (lncRNA) on the phagocytosis of macrophage via CD47 and the proliferation of non-small cell lung cancer (NSCLC) via TIPRL. Our results demonstrate that lncRNA KCTD21-AS1 increases in NSCLC tissues and is associated with poor survival of patients. KCTD21-AS1 and its m6A modification by Mettl14 promote NSCLC cell proliferation. miR-519d-5p gain suppresses the proliferation and metastasis of NSCLC cells by regulating CD47 and TIPRL. Through ceRNA with miR-519d-5p, KCTD21-AS1 regulates the expression of CD47 and TIPRL, which further regulates macrophage phagocytosis and cancer cell autophagy. Low miR-519d-5p in patients with NSCLC corresponds with poor survival. High TIPRL or CD47 levels in patients with NSCLC corresponds with poor survival. In conclusion, we demonstrate that KCTD21-AS1 and its m6A modification promote NSCLC cell proliferation, whereas miR-519d-5p inhibits this process by regulating CD47 and TIPRL expression, which further affects macrophage phagocytosis and cell autophagy. This study provides a strategy through miR-519-5p gain or KCTD21-AS1 depletion for NSCLC therapy by regulating CD47 and TIPRL.


Subject(s)
Adenine , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Adenine/analogs & derivatives , Autophagy/genetics , Carcinoma, Non-Small-Cell Lung/pathology , CD47 Antigen/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Intracellular Signaling Peptides and Proteins , Lung Neoplasms/pathology , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phagocytosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
18.
Nat Aging ; 4(3): 414-433, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38321225

ABSTRACT

The incidence of intestinal diseases increases with age, yet the mechanisms governing gut aging and its link to diseases, such as colorectal cancer (CRC), remain elusive. In this study, while considering age, sex and proximal-distal variations, we used a multi-omics approach in non-human primates (Macaca fascicularis) to shed light on the heterogeneity of intestinal aging and identify potential regulators of gut aging. We explored the roles of several regulators, including those from tryptophan metabolism, in intestinal function and lifespan in Caenorhabditis elegans. Suggesting conservation of region specificity, tryptophan metabolism via the kynurenine and serotonin (5-HT) pathways varied between the proximal and distal colon, and, using a mouse colitis model, we observed that distal colitis was more sensitive to 5-HT treatment. Additionally, using proteomics analysis of human CRC samples, we identified links between gut aging and CRC, with high HPX levels predicting poor prognosis in older patients with CRC. Together, this work provides potential targets for preventing gut aging and associated diseases.


Subject(s)
Colitis , Serotonin , Animals , Humans , Aged , Serotonin/metabolism , Tryptophan/metabolism , Multiomics , Colitis/metabolism , Aging/genetics , Caenorhabditis elegans/metabolism , Primates/metabolism
19.
Biomed Environ Sci ; 37(1): 71-84, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38326722

ABSTRACT

Objective: To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer (CRC). Methods: The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser capture microdissection and qRT-PCR, respectively. Dual-luciferase reporter gene assay was used to determine the target gene of miR-224-5p. The protein expressions of p53 and unc-51 like kinase 2 (ULK2) in CRC cells were detected by western blot. Flow cytometry was used to detect cell cycle and apoptosis. Cell proliferation was measured by CCK8 and EdU assay. Results: The miR-224-5p expression was upregulated in CRC tissues and increased progressively with the rise of CRC stage. CRC cells secreted extracellular miR-224-5p mainly in an exosome-dependent manner, and then miR-224-5p could be transferred to surrounding tumor cells to regulate cell proliferation in the form of autocrine or paracrine. Moreover, ULK2 was characterized as a direct target of miR-224-5p and was downregulated in CRC tissues. Interestingly, ULK2 inhibited CRC cell proliferation in a p53-dependent manner. Furthermore, exosome-derived miR-224-5p partially reversed the proliferation regulation of ULK2 on CRC cells. Conclusion: Our findings demonstrate that exosome-transmitted miR-224-5p promotes p53-dependent cell proliferation by targeting ULK2 in CRC, which may offer promising targets for CRC prevention and therapy.


Subject(s)
Colorectal Neoplasms , Exosomes , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Exosomes/genetics , Exosomes/metabolism , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
20.
Nutr Res ; 123: 67-79, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281319

ABSTRACT

The association between glycemic index (GI),glycemic load (GL) and ovarian cancer risk remains unclear. Carbohydrate intake promotes insulin secretion, leading to cell proliferation and invasion. We hypothesized that high GI and GL intake may increase ovarian cancer risk. Therefore, we conducted a meta-analysis after systematically searching PubMed, Embase, Web of Science, and Cochrane Library from inception to December 2022. Fixed- or random-effect models calculated the pooled relative risks (RRs) and corresponding 95% confidence intervals (CIs). Subgroup, sensitivity, publication bias analysis, and dose-response analysis were performed. Nine original studies were included, involving 4716 cases and 119,960 controls. No significant association was observed between GI or GL and ovarian cancer risk (GI: RR = 1.02 [95% CI, 0.83-1.26]; GL: RR = 1.11 [95% CI, 0.84-1.47]). Subgroup analysis suggested the results were not significantly modified by any group. Sensitivity analysis identified the sources of heterogeneity. No publication bias was observed. A linear positive dose-response relationship was observed between dietary GL and ovarian cancer risk after removing heterogeneous sources (RR = 1.11 [95% CI, 1.05-1.17], I2 = 32.9%, P = .23 at 50 U/d; RR = 1.04 [95% CI, 1.02-1.07], I2 = 19.1%, P = .29 at 20 U/d). These outcomes suggest that high dietary GL, but not GI, is associated with significantly increased ovarian cancer risk. Thus, sufficient intake of a low dietary GL is important for reducing ovarian cancer risk.


Subject(s)
Glycemic Load , Ovarian Neoplasms , Humans , Female , Glycemic Index , Blood Glucose , Risk Factors , Diet , Ovarian Neoplasms/etiology , Dietary Carbohydrates
SELECTION OF CITATIONS
SEARCH DETAIL
...