Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(48): 46276-46283, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38075825

ABSTRACT

Precisely controlled heteroatom-doped metal-free carbon catalysts are highly desirable for use in various renewable energy conversion and storage devices. Herein, we report a nitrogen-doped metal-free carbon catalyst for the oxygen reduction reaction (ORR) using a facile and cost-effective synthetic method. The obtained catalysts (NC-1100) were synthesized in two steps via an amino-acid complex coating and high-temperature carbonization. The various physical characteristics revealed that NC-1100 has a unique morphology, a controlled nitrogen bonding configuration, and a uniform pore distribution. The resulting catalyst shows excellent catalytic performance toward direct 4-electron oxygen reduction reaction (ORR) in an alkaline electrolyte, with a high onset potential of 0.95 V versus RHE and limiting current density (4.5 mA cm-2). Furthermore, the developed catalysts showed superior long-term operating stability and methanol durability compared to those of commercial Pt/C. This study provides a promising guideline for the development of next-generation electrocatalysts for fuel cells and wider applications.

2.
Nanoscale Adv ; 5(16): 4233-4239, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37560416

ABSTRACT

N-doped carbon materials have attracted considerable attention as highly functional materials because nitrogen doping distorts the carbon lattice, changes the charge density, and introduces additional defects. Among various positions of N atoms in N-doped carbon compounds, pyridinic-N, pyrrolic-N, and valley-N, which are doped at edge sites, exhibit specific electrocatalytic activities during the oxygen reduction reaction (ORR). However, it is difficult to selectively introduce these N atoms into a carbon matrix because the synthesis procedure typically includes high-temperature heat treatment. In this study, we applied a zeolite templating method to synthesize edge site-rich N-doped carbon materials. The sample fabricated using a zeolite template possessed high concentrations of pyridinic-N and valley-N atoms, demonstrating a significantly higher ORR catalytic activity than the sample synthesized without a zeolite template. Additional experiments conducted using various zeolites confirmed the positive effect of N-doped carbons on the ORR catalytic performance. This work demonstrated that the zeolite templating method not only increased the specific surface area and the number of active sites but also selectively created edge sites and improved the quality of the active sites.

3.
Chem Asian J ; 18(20): e202300534, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37545336

ABSTRACT

The manufacture of efficient and low-cost hydrogen evolution reaction (HER) catalysts is regarded as a critical solution to achieve carbon neutrality. Herein, we developed an economical method to synthesize a CoP-anchored N-doped carbon catalyst via one-step pyrolysis using inexpensive starting materials (cobalt ion salt, phytic acid, and glycine). The size of the CoP nanoparticles was controlled by adjusting the Co/P ratio of the catalysts. Nanoscale CoP particles with adequate exposure to active sites were uniformly anchored on the surface of the conductive nitrogen-doped carbon substrate, ensuring the rapid transfer of electrons and species. When Co/P=0.89, the as-made catalyst exhibited outstanding HER activity, with an extraordinarily low overpotential of 202 mV at 10 mA cm-2 and long-term stability.

4.
Dalton Trans ; 50(30): 10394-10399, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34251009

ABSTRACT

The preparation method of nanosheets using hyperswollen lyotropic lamellar phases, the 'two-dimensional reactor in amphiphilic phases (TRAP) method', has successfully provided nanosheets of various non-layered materials. Previously reported examples started from a single hydrophobic or hydrophilic precursor and multiple hydrophobic precursors. Here, we propose a synthesis method of nanosheets of ZIF-8, zinc 2-methylimidazolate, with a sodalite-like framework. They grow up to a few nanometers of thickness and several hundred nanometers of width with neither aggregation nor impurities from multiple hydrophilic precursors in the stoichiometric ratio inside the hydrophilic TRAPs consisting of the amphiphile Brij L4. The thin nanosheets of ZIF-8 doped with Co2+ (Co-ZIF-8) synthesized by the same method maintained a high specific surface area after calcination. Therefore, the oxygen reduction reaction (ORR) activity of the calcined Co-ZIF-8 NSs for fuel cells becomes higher than that of the calcined conventional Co-ZIF-8 crystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...