Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Sci Data ; 11(1): 847, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103399

ABSTRACT

Mixed emotions have attracted increasing interest recently, but existing datasets rarely focus on mixed emotion recognition from multimodal signals, hindering the affective computing of mixed emotions. On this basis, we present a multimodal dataset with four kinds of signals recorded while watching mixed and non-mixed emotion videos. To ensure effective emotion induction, we first implemented a rule-based video filtering step to select the videos that could elicit stronger positive, negative, and mixed emotions. Then, an experiment with 80 participants was conducted, in which the data of EEG, GSR, PPG, and frontal face videos were recorded while they watched the selected video clips. We also recorded the subjective emotional rating on PANAS, VAD, and amusement-disgust dimensions. In total, the dataset consists of multimodal signal data and self-assessment data from 73 participants. We also present technical validations for emotion induction and mixed emotion classification from physiological signals and face videos. The average accuracy of the 3-class classification (i.e., positive, negative, and mixed) can reach 80.96% when using SVM and features from all modalities, which indicates the possibility of identifying mixed emotional states.


Subject(s)
Emotions , Humans , Electroencephalography , Facial Expression , Video Recording
2.
IEEE Trans Vis Comput Graph ; 28(10): 3376-3390, 2022 Oct.
Article in English | MEDLINE | ID: mdl-33750692

ABSTRACT

Cartoon is a common form of art in our daily life and automatic generation of cartoon images from photos is highly desirable. However, state-of-the-art single-style methods can only generate one style of cartoon images from photos and existing multi-style image style transfer methods still struggle to produce high-quality cartoon images due to their highly simplified and abstract nature. In this article, we propose a novel multi-style generative adversarial network (GAN) architecture, called MS-CartoonGAN, which can transform photos into multiple cartoon styles. MS-CartoonGAN uses only unpaired photos and cartoon images of multiple styles for training. To achieve this, we propose to use (1) a hierarchical semantic loss with sparse regularization to retain semantic content and recover flat shading in different abstract levels, (2) a new edge-promoting adversarial loss for producing fine edges, and (3) a style loss to enhance the difference between output cartoon styles and make training process more stable. We also develop a multi-domain architecture, where the generator consists of a shared encoder and multiple decoders for different cartoon styles, along with multiple discriminators for individual styles. By observing that cartoon images drawn by different artists have their unique styles while sharing some common characteristics, our shared network architecture exploits the common characteristics of cartoon styles, achieving better cartoonization and being more efficient than single-style cartoonization. We show that our multi-domain architecture can theoretically guarantee to output desired multiple cartoon styles. Through extensive experiments including a user study, we demonstrate the superiority of the proposed method, outperforming state-of-the-art single-style and multi-style image style transfer methods.

3.
Front Psychol ; 12: 687974, 2021.
Article in English | MEDLINE | ID: mdl-34447333

ABSTRACT

Cartoon faces are widely used in social media, animation production, and social robots because of their attractive ability to convey different emotional information. Despite their popular applications, the mechanisms of recognizing emotional expressions in cartoon faces are still unclear. Therefore, three experiments were conducted in this study to systematically explore a recognition process for emotional cartoon expressions (happy, sad, and neutral) and to examine the influence of key facial features (mouth, eyes, and eyebrows) on emotion recognition. Across the experiments, three presentation conditions were employed: (1) a full face; (2) individual feature only (with two other features concealed); and (3) one feature concealed with two other features presented. The cartoon face images used in this study were converted from a set of real faces acted by Chinese posers, and the observers were Chinese. The results show that happy cartoon expressions were recognized more accurately than neutral and sad expressions, which was consistent with the happiness recognition advantage revealed in real face studies. Compared with real facial expressions, sad cartoon expressions were perceived as sadder, and happy cartoon expressions were perceived as less happy, regardless of whether full-face or single facial features were viewed. For cartoon faces, the mouth was demonstrated to be a feature that is sufficient and necessary for the recognition of happiness, and the eyebrows were sufficient and necessary for the recognition of sadness. This study helps to clarify the perception mechanism underlying emotion recognition in cartoon faces and sheds some light on directions for future research on intelligent human-computer interactions.

SELECTION OF CITATIONS
SEARCH DETAIL