Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Eye Res ; 207: 108568, 2021 06.
Article in English | MEDLINE | ID: mdl-33839112

ABSTRACT

Hydrocinnamoyl-L-valylpyrrolidine (AS-1), a synthetic low-molecule mimetic of myeloid differentiation primary response gene 88 (MyD88), inhibits inflammation by disrupting the interaction between the interleukin-1 receptor (IL-1R) and MyD88. Here, we describe the effects of AS-1 on injury-induced increases in inflammation and neovascularization in mouse corneas. Mice were administered a subconjunctival injection of 8 µL AS-1 diluent before or after corneal alkali burn, followed by evaluation of corneal resurfacing and corneal neovascularization (CNV) by slit-lamp biomicroscopy and clinical assessment. Corneal inflammation was assessed by whole-mount CD45+ immunofluorescence staining, and corneal hemangiogenesis and lymphangiogenesis following injury were evaluated by immunostaining for the vascular markers isolectin B4 (IB4) and the lymphatic vascularized marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), respectively. Additionally, corneal tissues were collected to determine the expression of 35 cytokines, and we detected activation of IL-1RI, MyD88, and mitogen-activated protein kinase (MAPK). The results showed that alkali conditions increased the number of CD45+ cells and expression of vascular endothelial growth factor (VEGF)-A, VEGF-C, and LYVE1 in corneas, with these levels decreased in the AS-1-treated group. Moreover, AS-1 effectively prevented alkali-induced cytokine production, blocked interactions between IL-1RI and MyD88, and inhibited MAPK activation post-alkali burn. These results indicated that AS-1 prevented alkali-induced corneal hemangiogenesis and lymphangiogenesis by blocking IL-1RI-MyD88 interaction, as well as extracellular signal-regulated kinase phosphorylation, and could be efficacious for the prevention and treatment of corneal alkali burn.


Subject(s)
Burns, Chemical/prevention & control , Corneal Neovascularization/prevention & control , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Eye Burns/chemically induced , Pyrrolidines/therapeutic use , Valine/analogs & derivatives , Angiogenesis Inhibitors , Animals , Biomarkers/metabolism , Blotting, Western , Burns, Chemical/enzymology , Burns, Chemical/pathology , Corneal Neovascularization/enzymology , Corneal Neovascularization/pathology , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Eye Burns/enzymology , Eye Burns/pathology , Eye Proteins/metabolism , Humans , Immunoprecipitation , Lymphangiogenesis/drug effects , Mice , Mice, Inbred C57BL , Phosphorylation , Real-Time Polymerase Chain Reaction , Sodium Hydroxide , Valine/therapeutic use
2.
Exp Eye Res ; 205: 108507, 2021 04.
Article in English | MEDLINE | ID: mdl-33609510

ABSTRACT

Proliferative retinopathies, such as proliferative diabetic retinopathy (PDR) and retinopathy of prematurity (ROP) are major causes of visual impairment and blindness in industrialized countries. Prostaglandin E2 (PGE2) is implicated in cellular proliferation and migration via E-prostanoid receptor (EP4R). The aim of this study was to investigate the role of PGE2/EP4R signaling in the promotion of retinal neovascularisation. In a streptozotocin (STZ)-induced diabetic model and an oxygen-induced retinopathy (OIR) model, rats received an intravitreal injection of PGE2, cay10598 (an EP4R agonist) or AH23848 (an EP4R antagonist). Optical coherence tomography, retinal histology and biochemical markers were assessed. Treatment with PGE2 or cay10598 accelerated pathological retinal angiogenesis in STZ and OIR-induced rat retina, which was ameliorated in rats pretreated with AH23848. Serum VEGF-A was upregulated in the PGE2-treated diabetic rats vs non-treated diabetic rats and significantly downregulated in AH23848-treated diabetic rats. PGE2 or cay10598 treatment also significantly accelerated endothelial tip-cell formation in new-born rat retina. In addition, AH23848 treatment attenuated PGE2-or cay10598-induced proliferation and migration by repressing the EGF receptor (EGFR)/Growth factor receptor bound protein 2-associated binder protein 1 (Gab1)/Akt/NF-κB/VEGF-A signaling network in human retinal microvascular endothelial cells (hRMECs). PGE2/EP4R signaling network is thus a potential therapeutic target for pathological intraocular angiogenesis.


Subject(s)
Dinoprostone/physiology , ErbB Receptors/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Retinal Neovascularization/physiopathology , Animals , Animals, Newborn , Biphenyl Compounds/pharmacology , Blotting, Western , Cell Movement/drug effects , Cell Proliferation/drug effects , Diabetes Mellitus, Experimental , Disease Models, Animal , Electrophoretic Mobility Shift Assay , Endothelium, Vascular/metabolism , Intravitreal Injections , Male , NF-kappa B/metabolism , Oxygen/toxicity , Phosphorylation , Pyrrolidinones/pharmacology , Rats, Sprague-Dawley , Receptors, Prostaglandin E, EP4 Subtype/agonists , Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors , Retinal Neovascularization/metabolism , Retinal Vessels/metabolism , Signal Transduction/physiology , Tetrazoles/pharmacology , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL