Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brief Bioinform ; 15(6): 942-52, 2014 Nov.
Article in English | MEDLINE | ID: mdl-23908249

ABSTRACT

As both the amount of generated biological data and the processing compute power increase, computational experimentation is no longer the exclusivity of bioinformaticians, but it is moving across all biomedical domains. For bioinformatics to realize its translational potential, domain experts need access to user-friendly solutions to navigate, integrate and extract information out of biological databases, as well as to combine tools and data resources in bioinformatics workflows. In this review, we present services that assist biomedical scientists in incorporating bioinformatics tools into their research. We review recent applications of Cytoscape, BioGPS and DAVID for data visualization, integration and functional enrichment. Moreover, we illustrate the use of Taverna, Kepler, GenePattern, and Galaxy as open-access workbenches for bioinformatics workflows. Finally, we mention services that facilitate the integration of biomedical ontologies and bioinformatics tools in computational workflows.


Subject(s)
Computational Biology/methods , Biological Ontologies , Computational Biology/trends , Data Interpretation, Statistical , Database Management Systems , Female , High-Throughput Nucleotide Sequencing/statistics & numerical data , Humans , Male , Software , Translational Research, Biomedical
2.
Chem Biol Drug Des ; 81(1): 5-12, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22765044

ABSTRACT

Genomics has made enormous progress in the twelve years since the publication of the first draft human genome sequence, but it has not yet been translated into the clinic. Despite spiralling development costs, the number of new drug registrations is not increasing. One reason for this lies in the genetic complexity of disease. Most diseases involve dysregulation in pathways that involve many genes, and many (including most cancers) are themselves genetically heterogeneous. Systems biology involves the multi-level simulation of physiology, cell biology and biochemistry using complex computational techniques. We show here using case studies in cancer and HIV how such computational models, and particularly models based on individual patient data, can be used for drug design and development, and in the selection of the appropriate treatment for a given patient in the face of resistance mutations. If these techniques are to be adopted in routine clinical practice, clinicians will need better training in modern approaches to the integrated analysis of large-scale heterogeneous data and multi-scale models, while developers will need to provide much more usable tools. Investment in computational infrastructure is needed so that results can be returned on clinically relevant timescales and data warehouses designed with data protection as well as accessibility in mind.


Subject(s)
Drug Design , Models, Theoretical , Anti-HIV Agents/chemistry , Anti-HIV Agents/therapeutic use , Computational Biology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , HIV Infections/drug therapy , Humans , Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , RNA Interference
3.
Interface Focus ; 3(2): 20130004, 2013 Apr 06.
Article in English | MEDLINE | ID: mdl-24427536

ABSTRACT

European funding under Framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for 5 years. The VPH Network of Excellence (NoE) has been set up to help develop common standards, open source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also working to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by the FP6 STEP project in 2006. In 2010, we wrote an assessment of the accomplishments of the first two years of the VPH in which we considered the biomedical science, healthcare and information and communications technology challenges facing the project (Hunter et al. 2010 Phil. Trans. R. Soc. A 368, 2595-2614 (doi:10.1098/rsta.2010.0048)). We proposed that a not-for-profit professional umbrella organization, the VPH Institute, should be established as a means of sustaining the VPH vision beyond the time-frame of the NoE. Here, we update and extend this assessment and in particular address the following issues raised in response to Hunter et al.: (i) a vision for the VPH updated in the light of progress made so far, (ii) biomedical science and healthcare challenges that the VPH initiative can address while also providing innovation opportunities for the European industry, and (iii) external changes needed in regulatory policy and business models to realize the full potential that the VPH has to offer to industry, clinics and society generally.

4.
Article in English | MEDLINE | ID: mdl-22899636

ABSTRACT

Despite the promises made that genomic sequencing would transform therapy by introducing a new era of personalized medicine, relatively few tangible breakthroughs have been made. This has led to the recognition that complex interactions at multiple spatial, temporal, and organizational levels may often combine to produce disease. Understanding this complexity requires that existing and future models are used and interpreted within a framework that incorporates knowledge derived from investigations at multiple levels of biological function. It also requires a computational infrastructure capable of dealing with the vast quantities of data generated by genomic approaches. In this review, we discuss the use of molecular modeling to generate quantitative and qualitative insights at the smallest scales of the systems biology hierarchy, how it can play an important role in the development of a systems understanding of disease and in the application of such knowledge to help discover new therapies and target existing ones on a personal level.


Subject(s)
Genomics , Models, Molecular , Precision Medicine , Anti-HIV Agents/therapeutic use , Base Pairing , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , HIV/enzymology , HIV/genetics , HIV/metabolism , HIV Infections/drug therapy , Humans , Signal Transduction
5.
Stud Health Technol Inform ; 174: 105-10, 2012.
Article in English | MEDLINE | ID: mdl-22491121

ABSTRACT

With the relentless increase of computer power and the widespread availability of digital patient-specific medical data, we are now entering an era when it is becoming possible to develop predictive models of human disease and pathology, which can be used to support and enhance clinical decision-making. The approach amounts to a grand challenge to computational science insofar as we need to be able to provide seamless yet secure access to large scale heterogeneous personal healthcare data in a facile way, typically integrated into complex workflows-some parts of which may need to be run on high performance computers-in a facile way that is integrated into clinical decision support software. In this paper, we review the state of the art in terms of case studies drawn from neurovascular pathologies and HIV/AIDS. These studies are representative of a large number of projects currently being performed within the Virtual Physiological Human initiative. They make demands of information technology at many scales, from the desktop to national and international infrastructures for data storage and processing, linked by high performance networks.


Subject(s)
Computer Simulation , Medical Informatics Applications , Systems Biology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/surgery , Computer Security , Decision Support Systems, Clinical/organization & administration , Electronic Health Records/organization & administration , Electronic Health Records/statistics & numerical data , HIV Infections/epidemiology , Humans
6.
Stud Health Technol Inform ; 174: 111-5, 2012.
Article in English | MEDLINE | ID: mdl-22491122

ABSTRACT

Driven primarily by advances in genomics, pharmacogenomics and systems biology technologies, large amounts of genomic and phenomic data are today being collected on individuals worldwide. Integrative analysis, mining, and computer modeling of these data, facilitated by information technology, have led to the development of predictive, preventive, and personalized medicine. This transformative approach holds the potential inter alia to enable future general practitioners and physicians to prescribe the right drug to the right patient at the right dosage. For such patient-specific medicine to be adopted as standard clinical practice, publicly accumulated knowledge of genes, proteins, molecular functional annotations, and interactions need to be unified and with electronic health records including phenotypic information, most of which still reside as paper-based records in hospitals. We review the state-of-the-art in terms of electronic data capture and medical data standards. Some of these activities are drawn from research projects currently being performed within the European Virtual Physiological Human (VPH) initiative; all are being monitored by the VPH INBIOMEDvision Consortium. Various ethical, legal and societal issues linked with privacy will increasingly arise in the post-genomic era. This will require a closer interaction between the bioinformatics/systems biology and medical informatics/healthcare communities. Planning for how individuals will own their personal health records is urgently needed, as the cost of sequencing a whole human genome will soon be less than U.S. $100. We discuss some of the issues that will need to be addressed by society as a result of this revolution in healthcare.


Subject(s)
Computational Biology/organization & administration , Genomics/organization & administration , Medical Informatics Applications , Data Mining/methods , Electronic Health Records/organization & administration , Genome, Human , Humans , Phenotype , Precision Medicine/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...