Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Nutrients ; 15(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37630723

ABSTRACT

Non-shivering thermogenesis (NST) has strong potential to combat obesity; however, a safe molecular approach to activate this process has not yet been identified. The sulfur amino acid taurine has the ability to safely activate NST and confer protection against obesity and metabolic disease in both mice and humans, but the mechanism of this action is unknown. In this study, we discover that a suite of taurine biosynthetic enzymes, especially that of cysteamine dioxygenase (ADO), significantly increases in response to ß3 adrenergic signaling in inguinal adipose tissue (IWAT) in order to increase intracellular concentrations of taurine. We further show that ADO is critical for thermogenic mitochondrial respiratory function as its ablation in adipocytes significantly reduces taurine levels, which leads to declines in mitochondrial oxygen consumption rates. Finally, we demonstrate via assay for transposase-accessible chromatin with sequencing (ATAC-seq) that taurine supplementation in beige adipocytes has the ability to remodel the chromatin landscape to increase the chromatin accessibility and transcription of genes, such as glucose-6-phosphate isomerase 1 (Gpi1), which are critical for NST. Taken together, our studies highlight a potential mechanism for taurine in the activation of NST that can be leveraged toward the treatment of obesity and metabolic disease.


Subject(s)
Adipose Tissue , Chromatin , Humans , Animals , Mice , Respiratory Rate , Adipocytes , Respiration
2.
Shock ; 59(4): 646-656, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36719431

ABSTRACT

ABSTRACT: Background: Sepsis is a life-threatening medical emergency, frequently complicated with intensive care unit-acquired weakness syndrome (ICU-AW). ICU-AW patients display flaccid weakness of the limbs, especially in the proximal limb muscles. However, little is known regarding its pathogenesis. Here, we aimed to identify the potential signaling pathway involved in ICU-AW regulation and identify a potential therapeutic drug for intervention. Methods: Both in vivo and in vitro septic mice were used. For the in vivo septic mice, either cecum ligation and puncture or intraperitoneal injection of LPS was conducted in mice. The body weight and muscle mass were then measured and recorded. Muscle strength was evaluated by limb grip strength test. The expression of proteins extracted from cells and muscles was checked through Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was carried out to test the transcriptional level of genes. Senescence-associated ß-galactosidase (SA-ß-gal) staining and Sirius red for collagen staining were conducted. Metformin, as an antiaging agent, was then tested for any attenuation of sepsis-related symptoms. For in vitro sepsis modeling, myoblasts were treated with LPS, analyzed for senescence-related protein expression, and subsequently retested upon metformin treatment. Results: We found that both the weight and strength of muscle were dramatically reduced in cecum ligation and puncture- or LPS-induced septic mice. RNA-seq analysis revealed that various cellular senescent genes were involved in sepsis. In line with this, expression of senescence-related genes, p53 and p21 were both upregulated. Both SA-ß-gal and Sirius red for collagen staining were enhanced in tibialis anterior muscles. Notably, inhibition of p53 expression by siRNA prominently reduced the number of SA-ß-gal-positive myoblasts upon LPS treatment. This indicated sepsis-induced cellular senescence to be dependent on p53. Consistent with the function of metformin in antiaging, metformin attenuated cellular senescence in both murine myoblasts and skeletal muscles during sepsis. Muscle strength of septic mice was improved upon metformin treatment. Metformin intervention is therefore proposed as a potential therapeutic strategy for ICU-AW. Conclusion: Taken together, we revealed a previously unappreciated linkage between cellular senescence and sepsis-induced muscle weakness and propose metformin as a potential therapeutic drug for the treatment of ICU-AW.


Subject(s)
Metformin , Sepsis , Mice , Animals , Metformin/pharmacology , Metformin/therapeutic use , Tumor Suppressor Protein p53/metabolism , Lipopolysaccharides/toxicity , Cellular Senescence , Muscle Weakness/drug therapy , Muscle Weakness/etiology , Sepsis/complications , Sepsis/drug therapy
3.
Zhonghua Nan Ke Xue ; 29(8): 741-745, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-38619523

ABSTRACT

Prostatitis, as a common disease in urology, accounts for one-fourth of the outpatient volume in urology clinics. The number of patients is increasing year by year. In particular, chronic prostatitis not only affects the quality of life of patients but also often poses challenges for doctors in outpatient clinics. In recent years, male health issues have also attracted much attention, especially male infertility. Studies have shown that prostatitis lead to male infertility through a variety of mechanisms. However, there were few comprehensive discussions on male infertility caused by prostatitis. This article provides a review of the research on the correlation between prostatitis and male infertility.


Subject(s)
Infertility, Male , Prostatitis , Urology , Humans , Male , Prostatitis/complications , Quality of Life , Infertility, Male/etiology , Outpatients
4.
Cell Discov ; 8(1): 60, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35764611

ABSTRACT

As a critical node for insulin/IGF signaling, insulin receptor substrate 1 (IRS-1) is essential for metabolic regulation. A long and unstructured C-terminal region of IRS-1 recruits downstream effectors for promoting insulin/IGF signals. However, the underlying molecular basis for this remains elusive. Here, we found that the C-terminus of IRS-1 undergoes liquid-liquid phase separation (LLPS). Both electrostatic and hydrophobic interactions were seen to drive IRS-1 LLPS. Self-association of IRS-1, which was mainly mediated by the 301-600 region, drives IRS-1 LLPS to form insulin/IGF-1 signalosomes. Moreover, tyrosine residues of YXXM motifs, which recruit downstream effectors, also contributed to IRS-1 self-association and LLPS. Impairment of IRS-1 LLPS attenuated its positive effects on insulin/IGF-1 signaling. The metabolic disease-associated G972R mutation impaired the self-association and LLPS of IRS-1. Our findings delineate a mechanism in which LLPS of IRS-1-mediated signalosomes serves as an organizing center for insulin/IGF-1 signaling and implicate the role of aberrant IRS-1 LLPS in metabolic diseases.

7.
Cancer Res Commun ; 2(7): 663-678, 2022 07.
Article in English | MEDLINE | ID: mdl-36923282

ABSTRACT

Fibrolamellar carcinoma (FLC) is an aggressive liver cancer with no effective therapeutic options. The extracellular environment of FLC tumors is poorly characterized and may contribute to cancer growth and/or metastasis. To bridge this knowledge gap, we assessed pathways relevant to proteoglycans, a major component of the extracellular matrix. We first analyzed gene expression data from FLC and nonmalignant liver tissue (n = 27) to identify changes in glycosaminoglycan (GAG) biosynthesis pathways and found that genes associated with production of chondroitin sulfate, but not other GAGs, are significantly increased by 8-fold. We then implemented a novel LC/MS-MS based method to quantify the abundance of different types of GAGs in patient tumors (n = 16) and found that chondroitin sulfate is significantly more abundant in FLC tumors by 6-fold. Upon further analysis of GAG-associated proteins, we found that versican (VCAN) expression is significantly upregulated at the mRNA and protein levels, the latter of which was validated by IHC. Finally, we performed single-cell assay for transposase-accessible chromatin sequencing on FLC tumors (n = 3), which revealed for the first time the different cell types in FLC tumors and also showed that VCAN is likely produced not only from FLC tumor epithelial cells but also activated stellate cells. Our results reveal a pathologic aberrancy in chondroitin (but not heparan) sulfate proteoglycans in FLC and highlight a potential role for activated stellate cells. Significance: This study leverages a multi-disciplinary approach, including state-of-the-art chemical analyses and cutting-edge single-cell genomic technologies, to identify for the first time a marked chondroitin sulfate aberrancy in FLC that could open novel therapeutic avenues in the future.


Subject(s)
Carcinoma, Hepatocellular , Chondroitin Sulfates , Humans , Chondroitin Sulfates/metabolism , Carcinoma, Hepatocellular/genetics , Heparan Sulfate Proteoglycans , Versicans
8.
Elife ; 102021 10 29.
Article in English | MEDLINE | ID: mdl-34711305

ABSTRACT

Optogenetic effectors and sensors provide a novel real-time window into complex physiological processes, enabling determination of molecular signaling processes within functioning cellular networks. However, the combination of these optical tools in mice is made practical by construction of genetic lines that are optically compatible and genetically tractable. We present a new toolbox of 21 mouse lines with lineage-specific expression of optogenetic effectors and sensors for direct biallelic combination, avoiding the multiallelic requirement of Cre recombinase -mediated DNA recombination, focusing on models relevant for cardiovascular biology. Optogenetic effectors (11 lines) or Ca2+ sensors (10 lines) were selectively expressed in cardiac pacemaker cells, cardiomyocytes, vascular endothelial and smooth muscle cells, alveolar epithelial cells, lymphocytes, glia, and other cell types. Optogenetic effector and sensor function was demonstrated in numerous tissues. Arterial/arteriolar tone was modulated by optical activation of the second messengers InsP3 (optoα1AR) and cAMP (optoß2AR), or Ca2+-permeant membrane channels (CatCh2) in smooth muscle (Acta2) and endothelium (Cdh5). Cardiac activation was separately controlled through activation of nodal/conducting cells or cardiac myocytes. We demonstrate combined effector and sensor function in biallelic mouse crosses: optical cardiac pacing and simultaneous cardiomyocyte Ca2+ imaging in Hcn4BAC-CatCh2/Myh6-GCaMP8 crosses. These experiments highlight the potential of these mice to explore cellular signaling in vivo, in complex tissue networks.


Subject(s)
Gene Expression , Mice/genetics , Optogenetics/methods , Animals , Mice, Transgenic
9.
Sci Adv ; 7(30)2021 Jul.
Article in English | MEDLINE | ID: mdl-34290098

ABSTRACT

Healthy brain function depends on the finely tuned spatial and temporal delivery of blood-borne nutrients to active neurons via the vast, dense capillary network. Here, using in vivo imaging in anesthetized mice, we reveal that brain capillary endothelial cells control blood flow through a hierarchy of IP3 receptor-mediated Ca2+ events, ranging from small, subsecond protoevents, reflecting Ca2+ release through a small number of channels, to high-amplitude, sustained (up to ~1 min) compound events mediated by large clusters of channels. These frequent (~5000 events/s per microliter of cortex) Ca2+ signals are driven by neuronal activity, which engages Gq protein-coupled receptor signaling, and are enhanced by Ca2+ entry through TRPV4 channels. The resulting Ca2+-dependent synthesis of nitric oxide increases local blood flow selectively through affected capillary branches, providing a mechanism for high-resolution control of blood flow to small clusters of neurons.

10.
Ying Yong Sheng Tai Xue Bao ; 32(7): 2555-2564, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34313074

ABSTRACT

The identification of ecological sources and corridors plays an important role in the construction of ecological security pattern. However, previous studies mainly concentrated on the optimal path selection of species migration and diffusion rather than the random path selection of the species, which makes most conclusions fail to objectively reveal the process of species migration and diffusion. Taking the downtown area of Hengyang City as an example, we selected the ecological sources and ecological corridors with the habitat quality analysis module of InVEST and Circuitscape 4.0 and evaluated the importance and connectivity of relevant ecological elements with the Linkage Mapper, with the aim to construct the ecological security pattern and delimitate the regions prior to ecological restoration. The results showed that there were 85 ecological sources dominated by woodland and grassland, together with a small number of ponds and beaches, which mainly distributed in the southwest of Zhengxiang District, the west of Yanfeng District, the northeast and south central of Zhuhui District, with a total area of 11.8 km2. There were 60 ecological sources with centrality greater than 100, accounting for 70.6% of the total. There were 217 ecological corridors and five potential ecological corridors mainly composed of forest land, among which the proportion of shrubbery and sparse forest land was higher. The corridors with higher importance were mainly distributed in the west of the studied area. After removing the barriers, the regional connectivity had been significantly improved, with the highest extent of 54.9%. The priority areas of ecological restoration were classified into three levels according to the value of cumulative current, namely, the high-grade area, the middle-grade area and the low-grade area. The high-grade area covered 4.3 km2 of barriers, mainly distributed in the southwest of Zhengxiang District, northeast and south central of Zhuhui District. The middle-grade area was dominated by pinch area and ecological source area with centrality less than 100, covering an area of about 12.9 km2, mainly distributed in the central part of Zhengxiang District, northeast and south central of Zhuhui District. The low-level area was mainly distributed in south central of Zhuhui District, with 51.8 km2 of residual ecological sources. By coupling InVEST habitat quality analysis module and circuit theory, the ecological security pattern for biological protection was constructed, which provides scientific reference for biological protection.


Subject(s)
Conservation of Natural Resources , Ecosystem , China , Cities , Ecology , Forests
11.
J Vasc Res ; 58(3): 159-171, 2021.
Article in English | MEDLINE | ID: mdl-33706307

ABSTRACT

INTRODUCTION: Studies in Cx40-GCaMP2 mice, which express calcium biosensor GCaMP2 in the endothelium under connexin 40 promoter, have identified the unique properties of endothelial calcium signals. However, Cx40-GCaMP2 mouse is associated with a narrow dynamic range and lack of signal in the venous endothelium. Recent studies have proposed many GCaMPs (GCaMP5/6/7/8) with improved properties although their performance in endothelium-specific calcium studies is not known. METHODS: We characterized a newly developed mouse line that constitutively expresses GCaMP8 in the endothelium under the VE-cadherin (Cdh5-GCaMP8) promoter. Calcium signals through endothelial IP3 receptors and TRP vanilloid 4 (TRPV4) ion channels were recorded in mesenteric arteries (MAs) and veins from Cdh5-GCaMP8 and Cx40-GCaMP2 mice. RESULTS: Cdh5-GCaMP8 mice showed lower baseline fluorescence intensity, higher dynamic range, and higher amplitudes of individual calcium signals than Cx40-GCaMP2 mice. Importantly, Cdh5-GCaMP8 mice enabled the first recordings of discrete calcium signals in the intact venous endothelium and revealed striking differences in IP3 receptor and TRPV4 channel calcium signals between MAs and mesenteric veins. CONCLUSION: Our findings suggest that Cdh5-GCaMP8 mice represent significant improvements in dynamic range, sensitivity for low-intensity signals, and the ability to record calcium signals in venous endothelium.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Calcium Signaling , Calcium-Binding Proteins/metabolism , Calcium/metabolism , Connexins/metabolism , Endothelial Cells/metabolism , Green Fluorescent Proteins/metabolism , Animals , Antigens, CD/genetics , Biosensing Techniques , Cadherins/genetics , Calcium-Binding Proteins/genetics , Connexins/genetics , Green Fluorescent Proteins/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mesenteric Arteries/cytology , Mesenteric Arteries/metabolism , Mesenteric Veins/cytology , Mesenteric Veins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence , Promoter Regions, Genetic , TRPV Cation Channels/metabolism , Gap Junction alpha-5 Protein
12.
J Formos Med Assoc ; 120(5): 1171-1178, 2021 May.
Article in English | MEDLINE | ID: mdl-33583703

ABSTRACT

Gadolinium-enhanced magnetic resonance angiography (MRA) and computed tomography angiography (CTA) are commonly used for diagnosing renal arterial stenosis (RAS); however, the diagnostic value is yet controversial. The aim of the study was to evaluate the diagnostic values of both methods. Electronic databases, including PubMed, Embase, and the Cochrane Library, were searched for studies, since inception until October 2017. A total of four articles involving 486 subjects were included in the analysis. The summary of sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the receiver operating characteristic (ROC) (AUC) were 0.70, 0.82, 14.54, 0.29, 63.80, and 0.81 for MRA-based diagnosis of RAS, respectively. The pooled sensitivity, specificity, PLR, NLR, DOR, and AUC for CTA detecting RAS were 0.73, 0.96, 13.04, 0.29, 71.99, and 0.93, respectively. Gadolinium-enhanced MRA and CTA provide a satisfactory diagnostic accuracy, thereby playing a critical role in the diagnosis of RAS.


Subject(s)
Gadolinium , Renal Artery Obstruction , Computed Tomography Angiography , Humans , Magnetic Resonance Angiography , Magnetic Resonance Spectroscopy , Renal Artery Obstruction/diagnostic imaging , Sensitivity and Specificity
13.
Br J Nutr ; 126(11): 1601-1610, 2021 12 14.
Article in English | MEDLINE | ID: mdl-33504374

ABSTRACT

In present study, we explored the effects and the underlying mechanisms of phospholipase C (PLC) mediating glucose-induced changes in intestinal glucose transport and lipid metabolism by using U-73122 (a PLC inhibitor). We found that glucose incubation activated the PLC signal and U-73122 pre-incubation alleviated the glucose-induced increase in plcb2, plce1 and plcg1 mRNA expression. Meanwhile, U-73122 pre-treatment blunted the glucose-induced increase in sodium/glucose co-transporters 1/2 mRNA and protein expressions. U-73122 pre-treatment alleviated the glucose-induced increase in TAG content, BODIPY 493/503 fluorescence intensity, lipogenic enzymes (glucose 6-phospate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), malic enzyme and fatty acid synthase (FAS)) activity and the mRNA expressions of lipogenic genes and related transcription factors (6pgd, g6pd, fas, acca, srebp1 and carbohydrate response element-binding protein (chrebp)) in intestinal epithelial cells of yellow catfish. Further research found that U-73122 pre-incubation mitigated the glucose-induced increase in the ChREBP protein expression and the acetylation level of ChREBP in HEK293T cells. Taken together, these data demonstrated that the PLC played a major role in the glucose-induced changes of glucose transport and lipid metabolism and provide a new perspective for revealing the molecular mechanism of glucose-induced changes of intestinal glucose absorption, lipid deposition and metabolism.


Subject(s)
Catfishes , Epithelial Cells , Glucose , Lipid Metabolism , Type C Phospholipases , Animals , Catfishes/metabolism , Epithelial Cells/metabolism , Glucose/metabolism , HEK293 Cells , Humans , Liver/metabolism , Type C Phospholipases/metabolism
14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-906017

ABSTRACT

Objective:To explore the mechanism of Kangxian Yixin prescription in regulating mitochondrial permeability transition pore(mPTP)and inhibiting cardiomyocyte apoptosis. Method:H9c2 cardiomyocytes were cultured routinely. After 8 h of starvation,the cells were divided into the normal group,model group,Kangxian Yixin prescription(0.25 g·L<sup>-1</sup>) group,and cyclosporin A(CsA,10 μmol·L<sup>-1</sup>) group and treated with the corresponding drugs for 24 h for follow-up experiments. The H9c2 cardiomyocyte hypertrophy model was induced by norepinephrine(NE),whose optimal concentration was determined by real-time polymerase chain reaction (Real-time PCR). The degree of mPTP opening was detected by flow cytometry, followed by the measurement of mRNA and protein expression levels of apoptosis-related factors cyclophilin D(Cyp-D),cytochrome C(Cyt-C),and cysteine aspartate-specific protease-3(Caspase-3) after mPTP opening and the quantification of mitochondrial membrane potential. Result:When the concentration of NE was 200 μmol·L<sup>-1</sup>, the mRNA expression levels of atrial natriuretic peptide(ANP) and brain natriuretic peptide(BNP) were the highest, implying that it was the optimal concentration to induce H9c2 cell hypertrophy. Compared with the normal group,the model group exhibited excessive opening of mPTP,weakened relative fluorescence intensity in mitochondria, decreased mitochondrial membrane potential(<italic>P</italic><0.05,<italic>P</italic><0.01),and elevated mRNA and protein expression of Cyp-D,Cyt-C,and Caspase-3(<italic>P</italic><0.05). Compared with the model group,both Kangxian Yixin prescription and CsA inhibited mPTP opening,enhanced the relative fluorescence intensity of mitochondria, increased mitochondrial membrane potential(<italic>P</italic><0.05,<italic>P</italic><0.01),and lowered the mRNA and protein expression of Cyp-D,Cyt-C,and Caspase-3 (<italic>P</italic><0.05). Conclusion:Kangxian Yixin prescription inhibits cardiomyocyte apoptosis possibly by regulating mPTP opening and inhibiting the expression of apoptosis-related factors Cyp-D,Cyt-C, and Caspase-3.

15.
Proc Natl Acad Sci U S A ; 117(43): 27022-27033, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33051294

ABSTRACT

The essential function of the circulatory system is to continuously and efficiently supply the O2 and nutrients necessary to meet the metabolic demands of every cell in the body, a function in which vast capillary networks play a key role. Capillary networks serve an additional important function in the central nervous system: acting as a sensory network, they detect neuronal activity in the form of elevated extracellular K+ and initiate a retrograde, propagating, hyperpolarizing signal that dilates upstream arterioles to rapidly increase local blood flow. Yet, little is known about how blood entering this network is distributed on a branch-to-branch basis to reach specific neurons in need. Here, we demonstrate that capillary-enwrapping projections of junctional, contractile pericytes within a postarteriole transitional region differentially constrict to structurally and dynamically determine the morphology of capillary junctions and thereby regulate branch-specific blood flow. We further found that these contractile pericytes are capable of receiving propagating K+-induced hyperpolarizing signals propagating through the capillary network and dynamically channeling red blood cells toward the initiating signal. By controlling blood flow at junctions, contractile pericytes within a functionally distinct postarteriole transitional region maintain the efficiency and effectiveness of the capillary network, enabling optimal perfusion of the brain.


Subject(s)
Capillaries/physiology , Cerebrovascular Circulation , Microcirculation , Pericytes/physiology , Animals , Arterioles/physiology , Calcium Channels/metabolism , Cerebral Veins/physiology , Mice
16.
Br J Nutr ; 124(12): 1241-1250, 2020 12 28.
Article in English | MEDLINE | ID: mdl-32600495

ABSTRACT

Dysregulation in hepatic lipid synthesis by excess dietary carbohydrate intake is often relevant with the occurrence of fatty liver; therefore, the thorough understanding of the regulation of lipid deposition and metabolism seems crucial to search for potential regulatory targets. In the present study, we examined TAG accumulation, lipid metabolism-related gene expression, the enzyme activities of lipogenesis-related enzymes, the protein levels of transcription factors or genes involving lipogenesis in the livers of yellow catfish fed five dietary carbohydrate sources, such as glucose, maize starch, sucrose, potato starch and dextrin, respectively. Generally speaking, compared with other carbohydrate sources, dietary glucose promoted TAG accumulation, up-regulated lipogenic enzyme activities and gene expressions, and down-regulated mRNA expression of genes involved in lipolysis and small ubiquitin-related modifier (SUMO) modification pathways. Further studies found that sterol regulatory element binding protein 1 (SREBP1), a key transcriptional factor relevant to lipogenic regulation, was modified by SUMO1. Mutational analyses found two important sites for SUMOylation modification (K254R and K264R) in SREBP1. Mutant SREBP lacking lysine 264 up-regulated the transactivation capacity on an SREBP-responsive promoter. Glucose reduced the SUMOylation level of SREBP1 and promoted the protein expression of SREBP1 and its target gene stearoyl-CoA desaturase 1 (SCD1), indicating that SUMOylation of SREBP1 mediated glucose-induced hepatic lipid metabolism. Our study elucidated the molecular mechanism of dietary glucose increasing hepatic lipid deposition and found that the SREBP-dependent transactivation was regulated by SUMO1 modification, which served as a new target for the transcriptional programmes governing lipid metabolism.


Subject(s)
Dietary Carbohydrates/pharmacology , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation/drug effects , Animals , Catfishes , Diet/methods , Down-Regulation/drug effects , Liver/metabolism , RNA, Messenger/metabolism , Stearoyl-CoA Desaturase/metabolism , Sterol Regulatory Element Binding Protein 1/drug effects , Up-Regulation/drug effects
17.
Org Biomol Chem ; 18(25): 4802-4814, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32538423

ABSTRACT

A versatile Cu-catalyzed direct ortho-C(sp2)-H amination of benzamides and picolinamides with alkylamines has been achieved. This method employs cheap and eco-friendly copper as a catalyst and oxygen as an oxidant, and also has the advantages of straightforward steps and excellent functional group compatibility. Further application of our approach was demonstrated by the synthesis of TCMDC-125116, SPHINX, and SRPIN340.

18.
Environ Sci Pollut Res Int ; 27(21): 26835-26844, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32382912

ABSTRACT

A novel three-dimensional aluminum sludge/polyvinyl alcohol/sodium alginate(AS/PA/SA) gel spheres were designed and prepared for uranium(VI) adsorption, and it overcomes the shortcomings of poor recycling of powdery aluminum sludge adsorbent and poor stability of sodium alginate. Experiments show that the P-S-AS has a good pH range for removal of uranium (4-5). Fitting experimental data with pseudo-first-order kinetic model and pseudo-second-order kinetic model shows that the adsorption of U(VI) by P-S-AS is a chemical action. The fit of the Langmuir isotherm model and Freundlich isotherm model to the experimental data found that the P-S-AS adsorbed U(VI) to a single layer. Thermodynamic analysis shows that the adsorption occurs spontaneously, and an increase in temperature is favorable for the adsorption of uranium by the P-S-AS. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis of the P-S-AS before and after adsorption showed that the main adsorption mechanism was the complexation reaction between functional groups and U(VI), the bonding reaction between metal oxides and U(VI).


Subject(s)
Aluminum , Uranium , Adsorption , Hydrogen-Ion Concentration , Kinetics , Sewage , Spectroscopy, Fourier Transform Infrared
19.
J Nutr ; 150(7): 1790-1798, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32470978

ABSTRACT

BACKGROUND: Dietary carbohydrate affects intestinal glucose absorption and lipid deposition, but the underlying mechanisms are unknown. OBJECTIVES: We used yellow catfish and their isolated intestinal epithelial cells (IECs) to test the hypothesis that sodium/glucose cotransporters (SGLTs) 1/2 and acetylated carbohydrate response element binding protein (ChREBP) mediated glucose-induced changes in glucose absorption and lipid metabolism. METHODS: Yellow catfish (mean ± SEM weight: 4.68 ± 0.02 g, 3 mo old, mixed sex) were fed diets containing 250 g carbohydrates/kg from glucose (G, control), corn starch (CS), sucrose (S), potato starch (PS), or dextrin (D) for 10 wk. IECs were isolated from different yellow catfish and incubated for 24 h in a control or glucose (15 mM) solution with or without a 2-h pretreatment with an inhibitor [sotagliflozin (LX-4211) or tubastatin A (TBSA)]. Human embryonic kidney cells (HEK293T cells) were transfected with a Flag-ChREBP plasmid to explore ChREBP acetylation. Triglyceride (TG) and glucose concentrations and enzymatic activities were measured in the intestine and IECs of yellow catfish. They also were subjected to immunofluorescence, immunoprecipitation, qPCR, and immunoblotting. Immunoblotting and immunoprecipitation were performed with HEK293T cells. RESULTS: The G group had greater intestine TGs (0.99- to 2.30-fold); activities of glucose 6-phospate dehydrogenase, 6-phosphogluconate dehydrogenase, and isocitrate dehydrogenase (0.12- to 2.10-fold); and expression of lipogenic genes (0.32- to 2.34-fold) than the CS, PS, and D groups. The G group had greater intestine sglt1/2 mRNA and protein expression than the CS, S and D groups (0.35- to 1.12-fold and 0.40- to 4.67-fold, respectively), but lower mRNA amounts of lipolytic genes (48.6%-65.8%) than the CS and PS groups. LX-4211 alleviated the glucose-induced increase in sglt1/2 mRNA (38.2%-47.4%) and SGLT1 protein (48.0%) expression, TGs (29.3%), and lipogenic enzyme activities (27.7%-42.1%) and gene expression (38.0%-55.5%) in the IECs. TBSA promoted the glucose-induced increase in TGs (11.3%), fatty acid synthase activity (32.6%), and lipogenic gene expression (21.6%-34.4%) in the IECs and acetylated ChREBP (10.5%) in HEK293T cells. CONCLUSIONS: SGLT1/2 signaling and acetylated ChREBP mediated glucose-induced changes in glucose absorption and lipid metabolism in the intestine and IECs of yellow catfish.


Subject(s)
Catfishes/physiology , Diet/veterinary , Glucose/administration & dosage , Intestinal Mucosa/drug effects , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Biological Transport , Blood Glucose , Cell Survival/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Lipid Metabolism , Signal Transduction , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 2/genetics , Triglycerides
20.
Environ Pollut ; 263(Pt B): 114420, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32244122

ABSTRACT

Lipid metabolism could be used as a biomarker for environmental monitoring of metal pollution, including Cu. Given the potential role of the Wnt/ß-catenin signaling pathway and acetylation in lipid metabolism, the aim of this study was to investigate the mechanism of Wnt signaling and acetylation mediating Cu-induced lipogenesis. Grass carp Ctenopharyngodon idella, widely distributed freshwater teleost, were used as the model. We found that waterborne Cu exposure increased the accumulation of Cu and lipid, up-regulated lipogenesis, suppressed Wnt signaling, reduced ß-catenin protein level and its nuclear location, reduced the sirt1 mRNA levels and up-regulated the ß-catenin acetylation level. Further investigation found that Cu up-regulated lipogenesis through Wnt/ß-catenin pathway; Cu regulated the ß-catenin acetylation, and K311 was the key acetylated residue after Cu incubation. SIRT1 mediated Cu-induced changes of acetylated ß-catenin and played an essential role in nuclear accumulation of ß-catenin and Cu-induced lipogenesis. Cu facilitated lipid accumulation via the regulation of Wnt pathway by SIRT1. For the first time, our study uncovered the novel mechanism for Wnt/ß-catenin pathway and ß-catenin acetylation levels mediating Cu-induced lipid deposition, which provided insights into the association between Cu exposure and lipid metabolism in fish and had important environmental implications for monitoring metal pollution in the water by using new biomarkers involved in lipid metabolism.


Subject(s)
Carps , beta Catenin , Acetylation , Animals , Lipids , Lipogenesis , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL
...