Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 124: 462-471, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182154

ABSTRACT

Plasmids play a critical role in the dissemination of antimicrobial resistance genes (ARGs), however, a systematical understanding of ARGs originated from plasmids in swine production is currently lacking. Herein, quantitative polymerase chain reaction was applied to determine the prevalence of ten ARGs and the class1 integron gene intI1 of plasmid source in swine manure from 44 farms in Sichuan, Hubei and Hebei provinces, China. All assayed ARGs were observed in plasmid DNA samples, and the average absolute abundance of aac(6')-Ib-cr, blaNDM, blaCTX-M, optrA, ermB, floR, mcr-1, qnrS, tetM, sul1 and intI1 were 7.09, 2.90, 4.67, 6.62, 7.55, 7.14, 4.08, 4.85, 7.16, 7.11 and 8.07 of 10 log copies/gram, respectively. IntI1 showed a high correlation (r > 0.8, P < 0.01) with the abundance of aac(6')-Ib-cr and sul1 in swine manure. Moreover, the farm scale (i.e., herd population) and geographical location were not found to be critical factors influencing the absolute abundance of ARGs of plasmid DNA in swine farms. However, the concentrations of florfenicol, Cu, Zn, Fe, total phosphorus (TP) and total potassium (TK) demonstrated a significant correlation with the abundance of several ARGs. Particularly, Cu and Zn had high correlations with optrA and blaCTX-M, respectively. Our results demonstrated that antibiotics, heavy metals and environmental nutrients are likely jointly contributing to the long-term persistence of ARGs in swine production. This study provides insights into the abundance and influencing factors of ARGs from swine manure, which is of significance for assessing and reducing the public health risks in livestock production.


Subject(s)
Manure , Metals, Heavy , Animals , Anti-Bacterial Agents/analysis , DNA , Drug Resistance, Bacterial/genetics , Farms , Genes, Bacterial , Manure/analysis , Metals, Heavy/analysis , Phosphorus , Potassium , Swine
2.
Environ Sci Pollut Res Int ; 29(45): 69037-69047, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35562609

ABSTRACT

Swine manure treatment plants are important reservoirs of plasmid-harboring antibiotic resistance genes (ARGs) and physicochemical contaminants, but the changes in the abundances of plasmids and ARGs, and their interactions with the physicochemical properties of manure, are still unclear. Thus, in the present study, plasmidome and metagenome analyses were conducted for samples collected at different stages in the swine manure treatment process. The results indicated that anaerobic digestion and aerobic digestion were the most efficient stages for reducing the abundances of ARGs in swine manure. However, the plasmids associated with ARGs were not effectively removed in these stages. Through the whole treatment process, the IncL/M, IncQ1, IncHI2A, IncA/C, and IncN plasmid groups had strong correlations (r > 0.8, P < 0.01) with most ARG types, thereby indicating that these plasmids play important roles in the persistence of ARGs in this environment. Furthermore, the pH, total nitrogen, total phosphorus, and four heavy metals (Cu, Zn, As, and Fe) significantly affected the abundances of seven ARG subtypes (tetB(P), ant(6)-Ia, tet44, aph(3'')-Ib, mefB, tet(L), and tet(39)). In particular, florfenicol had the most positive correlations with ARGs. Our results indicated that nutrients, heavy metals, and antibiotics all contributed to the presence and persistence of plasmid-harboring ARGs. This study provides insights into the fate of plasmids and ARGs, and related factors during the swine manure treatment process, thereby facilitating the development of a new treatment technique for removing ARGs and reducing the public health risk associated with livestock production.


Subject(s)
Manure , Metals, Heavy , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Genes, Bacterial , Manure/analysis , Metagenome , Metals, Heavy/analysis , Nitrogen/analysis , Phosphorus , Plasmids , Swine
3.
Pathogens ; 10(8)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34451483

ABSTRACT

The global dissemination of plasmid-mediated colistin resistance gene mcr and its variants have posed a great threat to public health. Therefore, the Chinese government banned the use of colistin as a feed additive in livestock in April 2017. To explore the dynamic changes of overall antibiotic resistance genes (ARGs) and phylogenetic relationship of bacteria from a single pig farm before and after the withdrawal of colistin, fecal swab samples were collected from a large-scale pig farm before (n = 32; 2 months pre-withdrawal of colistin) and after withdrawal of colistin (n = 30; 13 months post-withdrawal of colistin). Escherichia coli and Klebsiella pneumoniae were isolated. Whole-genome sequencing (Illumina, MiSeq) was performed to examine ARGs, plasmids and the genetic relationship of the isolates. The overall SNP results indicated all isolates had high genetic diversity, and the evolutionary relationship across isolates was not influenced by the ban of colistin. However, the prevalence of mcr-1.1 (5.6%, p < 0.01) was significantly lower than before the ban (86.4%). Plasmid profiling analysis showed that 17 of 20 (85.0%) observed mcr-1.1 genes reside on IncX4-type plasmids, 16 of which (94.1%) were from isolates before the ban. On the contrary, the presence of blaCTX-M gene was significantly increased (p = 0.0215) post-withdrawal of colistin. Our results showed that withdrawal of colistin reduced the incidence of mcr-1-harboring IncX4-type plasmids, but had limited influences on unrelated ARGs.

4.
Sci Total Environ ; 738: 139735, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32531590

ABSTRACT

Shared bicycles are prevailing in China but the extent to which they contribute to maintaining and transmitting pathogens and antibiotic-resistant bacteria remain largely unknown. To fill the knowledge gap, herein, swab samples (n = 963) were collected from handlebars of shared bicycles in areas of hospital, school, metro station (n = 887) and riders (n = 76) in Chengdu, China. Staphylococci (n = 241) and Enterococci (n = 69) were widely distributed across sampling locations at a frequency of 2.3%-12.9%, and 0.08%-5.5%, respectively. Bicycle or rider-borne Gram-positive bacteria were frequently resistant to clinically important antibiotics including linezolid, fosfomycin, and vancomycin, and a significant portion of these isolates (3.4%-16.6% for Staphylococci and 0.1%-13.8% for Enterococci) indicated multidrug resistance. Nineteen Staphylococcus aureus isolates were identified in this collection and 52.6% of which were considered as methicillin-resistant S. aureus. Whole genome sequencing further characterized 26 antimicrobial resistance genes (ARGs) including fosB, fusB, and lnu(G) in S. aureus and 21 ARGs including optrA in Enterococci. Leveraging a complementary approach with conventional MLST, whole genome SNP and MLST analyses, we present that genetically closely-related bacteria were found in bicycles and riders across geographical-distinct locations suggesting bacterial transmission. Further, five new ST types 5697-5701 were firstly characterized in S. aureus. ST 942 and ST 1640 are new ST types observed in E. faecalis, and E. faecium, respectively. Our results highlighted the risk of shared bicycle system in disseminating pathogens and antibiotic resistance which warrants effective disinfections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcus , Anti-Bacterial Agents , Bicycling , China , Enterococcus , Microbial Sensitivity Tests , Multilocus Sequence Typing , Prevalence , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...