Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 4748, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959353

ABSTRACT

Fabry disease is caused by a deficiency of α-galactosidase A (GLA) leading to the lysosomal accumulation of globotriaosylceramide (Gb3) and other glycosphingolipids. Fabry patients experience significant damage to the heart, kidney, and blood vessels that can be fatal. Here we apply directed evolution to generate more stable GLA variants as potential next generation treatments for Fabry disease. GLAv05 and GLAv09 were identified after screening more than 12,000 GLA variants through 8 rounds of directed evolution. Both GLAv05 and GLAv09 exhibit increased stability at both lysosomal and blood pH, stability to serum, and elevated enzyme activity in treated Fabry fibroblasts (19-fold) and GLA-/- podocytes (10-fold). GLAv05 and GLAv09 show improved pharmacokinetics in mouse and non-human primates. In a Fabry mouse model, the optimized variants showed prolonged half-lives in serum and relevant tissues, and a decrease of accumulated Gb3 in heart and kidney. To explore the possibility of diminishing the immunogenic potential of rhGLA, amino acid residues in sequences predicted to bind MHC II were targeted in late rounds of GLAv09 directed evolution. An MHC II-associated peptide proteomics assay confirmed a reduction in displayed peptides for GLAv09. Collectively, our findings highlight the promise of using directed evolution to generate enzyme variants for more effective treatment of lysosomal storage diseases.


Subject(s)
Fabry Disease , Humans , Mice , Animals , Fabry Disease/drug therapy , Fabry Disease/genetics , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism , Kidney/metabolism , Disease Models, Animal , Fibroblasts/metabolism
2.
Curr Biol ; 30(12): 2379-2385.e4, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32413301

ABSTRACT

The ability to rapidly arouse from sleep is important for survival. However, increased arousals in patients with sleep apnea and other disorders prevent restful sleep and contribute to cognitive, metabolic, and physiologic dysfunction [1, 2]. Little is currently known about which neural systems mediate these brief arousals, hindering the development of treatments that restore normal sleep. The basal forebrain (BF) receives inputs from many nuclei of the ascending arousal system, including the brainstem parabrachial neurons, which promote arousal in response to elevated blood carbon dioxide levels, as seen in sleep apnea [3]. Optical inhibition of the terminals of parabrachial neurons in the BF impairs cortical arousals to hypercarbia [4], but which BF cell types mediate cortical arousals in response to hypercarbia or other sensory stimuli is unknown. Here, we tested the role of BF parvalbumin (PV) neurons in arousal using optogenetic techniques in mice. Optical stimulation of BF-PV neurons produced rapid transitions to wakefulness from non-rapid eye movement (NREM) sleep but did not affect REM-wakefulness transitions. Unlike previous studies of BF glutamatergic and cholinergic neurons, arousals induced by stimulation of BF-PV neurons were brief and only slightly increased total wake time, reminiscent of clinical findings in sleep apnea [5, 6]. Bilateral optical inhibition of BF-PV neurons increased the latency to arousal produced by exposure to hypercarbia or auditory stimuli. Thus, BF-PV neurons are an important component of the brain circuitry that generates brief arousals from sleep in response to stimuli, which may indicate physiological dysfunction or danger to the organism.


Subject(s)
Acoustic Stimulation , Arousal/physiology , Carbohydrates/administration & dosage , Neurons/physiology , Animal Feed/analysis , Animals , Basal Forebrain/physiology , Diet , Mice , Parvalbumins/metabolism , Sleep/physiology , Wakefulness/physiology
3.
Sci Rep ; 9(1): 3607, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837664

ABSTRACT

The thalamic reticular nucleus (TRN) is implicated in schizophrenia pathology. However, it remains unclear whether alterations of TRN activity can account for abnormal electroencephalographic activity observed in patients, namely reduced spindles (10-15 Hz) during sleep and increased delta (0.5-4 Hz) and gamma-band activity (30-80 Hz) during wakefulness. Here, we utilized optogenetic and reverse-microdialysis approaches to modulate activity of the major subpopulation of TRN GABAergic neurons, which express the calcium-binding protein parvalbumin (PV), and are implicated in schizophrenia dysfunction. An automated algorithm with enhanced efficiency and reproducibility compared to manual detection was used for sleep spindle assessment. A novel, low power, waxing-and-waning optogenetic stimulation paradigm preferentially induced spindles that were indistinguishable from spontaneously occurring sleep spindles without altering the behavioral state, when compared to a single pulse laser stimulation used by us and others. Direct optogenetic inhibition of TRN-PV neurons was ineffective in blocking spindles but increased both wakefulness and cortical delta/gamma activity, as well as impaired the 40 Hz auditory steady-state response. For the first time we demonstrate that spindle density is markedly reduced by (i) optogenetic stimulation of a major GABA/PV inhibitory input to TRN arising from basal forebrain parvalbumin neurons (BF-PV) and; (ii) localized pharmacological inhibition of low-threshold calcium channels, implicated as a genetic risk factor for schizophrenia. Together with clinical findings, our results support impaired TRN-PV neuron activity as a potential cause of schizophrenia-linked abnormalities in cortical delta, gamma, and spindle activity. Modulation of the BF-PV input to TRN may improve these neural abnormalities.


Subject(s)
GABAergic Neurons/physiology , Parvalbumins/metabolism , Schizophrenia/physiopathology , Sleep/physiology , Thalamic Nuclei/physiology , Wakefulness/physiology , Animals , Electrophysiological Phenomena , Mice , Optogenetics
4.
J Neurosci ; 36(6): 2057-67, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26865627

ABSTRACT

Understanding the control of sleep-wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep-wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that "selective" stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of "selective" optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. SIGNIFICANCE STATEMENT: Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral functions, such as control of sleep and wakefulness. However, the interpretation of optogenetic experiments requires knowledge of the effects of stimulation on local neurotransmitter levels and effects on neighboring neurons. Here, using a novel "opto-dialysis" probe to couple optogenetics and in vivo microdialysis, we report that optical stimulation of basal forebrain (BF) cholinergic neurons in mice increases local acetylcholine levels and wakefulness. Reverse microdialysis of cholinergic antagonists within BF prevents the wake-promoting effect. This important result challenges the prevailing dictum that BF cholinergic projections to cortex directly control wakefulness and illustrates the utility of "opto-dialysis" for dissecting the complex brain circuitry underlying behavior.


Subject(s)
Cholinergic Neurons/physiology , Prosencephalon/physiology , Wakefulness/physiology , Acetylcholine/metabolism , Animals , Cholinergic Antagonists/administration & dosage , Cholinergic Antagonists/pharmacology , Cholinergic Neurons/drug effects , Electroencephalography , Electromyography , Female , Male , Mice , Microdialysis , Optogenetics , Parvalbumins/metabolism , Photic Stimulation , Prosencephalon/drug effects , Sleep Stages/physiology , Wakefulness/drug effects , gamma-Aminobutyric Acid/physiology
5.
Nat Sci Sleep ; 8: 9-20, 2016.
Article in English | MEDLINE | ID: mdl-26793010

ABSTRACT

Sleep and energy balance are essential for health. The two processes act in concert to regulate central and peripheral homeostasis. During sleep, energy is conserved due to suspended activity, movement, and sensory responses, and is redirected to restore and replenish proteins and their assemblies into cellular structures. During wakefulness, various energy-demanding activities lead to hunger. Thus, hunger promotes arousal, and subsequent feeding, followed by satiety that promotes sleep via changes in neuroendocrine or neuropeptide signals. These signals overlap with circuits of sleep-wakefulness, feeding, and energy expenditure. Here, we will briefly review the literature that describes the interplay between the circadian system, sleep-wake, and feeding-fasting cycles that are needed to maintain energy balance and a healthy metabolic profile. In doing so, we describe the neuroendocrine, hormonal/peptide signals that integrate sleep and feeding behavior with energy metabolism.

6.
Am J Physiol Endocrinol Metab ; 306(6): E635-47, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24398400

ABSTRACT

A high-calorie diet accompanied by low levels of physical activity (PA) accounts for the widespread prevalence of obesity today, and yet some people remain lean even in this obesogenic environment. Here, we investigate the cause for this exception. A key trait that predicts high PA in both humans and laboratory rodents is intrinsic aerobic capacity. Rats artificially selected as high-capacity runners (HCR) are lean and consistently more physically active than their low-capacity runner (LCR) counterparts; this applies to both males and females. Here, we demonstrate that HCR show heightened total energy expenditure (TEE) and hypothesize that this is due to higher nonresting energy expenditure (NREE; includes activity EE). After matching for body weight and lean mass, female HCR consistently had heightened nonresting EE, but not resting EE, compared with female LCR. Because of the dominant role of skeletal muscle in nonresting EE, we examined muscle energy use. We found that lean female HCR had higher muscle heat dissipation during activity, explaining their low economy of activity and high activity EE. This may be due to the amplified skeletal muscle expression levels of proteins involved in EE and reduced expression levels of proteins involved in energy conservation in HCR relative to LCR. This is also associated with an increased sympathetic drive to skeletal muscle in HCR compared with LCR. We find little support for the hypothesis that resting metabolic rate is correlated with maximal aerobic capacity if body size and composition are fully considered; rather, the critical factor appears to be activity thermogenesis.


Subject(s)
Energy Metabolism , Models, Biological , Muscle, Skeletal/metabolism , Sympathetic Nervous System/metabolism , Thermogenesis , Thinness/metabolism , Up-Regulation , Animals , Body Composition , Body Temperature Regulation , Body Weight , Exercise Tolerance , Female , Gene Expression Regulation , Motor Activity , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/innervation , Rats
7.
Neuroreport ; 23(10): 596-600, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22643233

ABSTRACT

The brain melanocortin (MC) system is one of numerous overlapping systems regulating energy balance; it consists of peptides including α-melanocyte-stimulating hormone that act through melanocortin receptors (MCRs). Mutations and polymorphisms in MC3R and MC4R have been identified as one of the most common genetic contributors to obesity in human studies. Brain MC3R and MC4R are known to modulate energy expenditure (EE) and food intake, but much less is known regarding brain MC5R. To test the hypothesis that brain MC modulates physical activity (PA) and EE, we compared brain MCR profiles in rats that consistently show high versus low levels of 'spontaneous' daily PA. Compared with low-activity rats, high-activity rats show enhanced mRNA expression of MCRs in the brain, specifically of MC3R in the paraventricular nucleus (PVN), and MC4R and MC5R in the perifornical lateral hypothalamus. Next, we microinjected the MCR agonist melanotan II into the PVN region and measured PA and EE. Intra-PVN melanotan II induced a dose-dependent increase in PA and this effect was greater in high-activity rats compared with low-activity rats. These results indicate region-specific brain MCR expression in the heightened PA seen in association with high endurance capacity and identify promising targets in the brain MC system that may contribute to interindividual variability in energy balance.


Subject(s)
Brain/metabolism , Phenotype , Receptor, Melanocortin, Type 4/biosynthesis , Receptors, Melanocortin/biosynthesis , Thinness/metabolism , Animals , Eating/physiology , Female , Male , Motor Activity/physiology , Rats , Receptor, Melanocortin, Type 3 , Receptor, Melanocortin, Type 4/genetics , Receptors, Melanocortin/genetics , Thinness/genetics
8.
Mol Genet Metab ; 99(1): 62-71, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19751987

ABSTRACT

Here we report the characterization of a knock-in mouse model for the autosomal recessive disorder mucopolysaccharidosis type I-Hurler (MPS I-H), also known as Hurler syndrome. MPS I-H is the most severe form of alpha-l-iduronidase deficiency. alpha-l-iduronidase (encoded by the IDUA gene) is a lysosomal enzyme that participates in the degradation of dermatan sulfate and heparan sulfate. Using gene replacement methodology, a nucleotide change was introduced into the mouse Idua locus that resulted in a nonsense mutation at codon W392. The Idua-W392X mutation is analogous to the human IDUA-W402X mutation commonly found in MPS I-H patients. We found that the phenotype in homozygous Idua-W392X mice closely correlated with the human MPS I-H disease. Homozygous W392X mice showed no detectable alpha-l-iduronidase activity. We observed a defect in GAG degradation as evidenced by an increase in sulfated GAGs excreted in the urine and stored in multiple tissues. Histology and electron microscopy also revealed evidence of GAG storage in all tissues examined. Additional assessment revealed bone abnormalities and altered metabolism within the Idua-W392X mouse. This new mouse will provide an important tool to investigate therapeutic approaches for MPS I-H that cannot be addressed using current MPS I-H animal models.


Subject(s)
Codon, Nonsense , Disease Models, Animal , Iduronidase/genetics , Mucopolysaccharidosis I/genetics , Absorptiometry, Photon , Animals , Bone Density , Femur/abnormalities , Femur/metabolism , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Glycosaminoglycans/metabolism , Humans , Iduronidase/deficiency , Iduronidase/metabolism , Liver/metabolism , Liver/pathology , Liver/ultrastructure , Mice , Mice, Inbred Strains , Mice, Transgenic , Microscopy, Electron , Mucopolysaccharidosis I/enzymology , Mucopolysaccharidosis I/pathology , Reverse Transcriptase Polymerase Chain Reaction , Spleen/metabolism , Spleen/pathology , Spleen/ultrastructure , Survival Analysis
9.
J Phys Chem B ; 112(47): 14993-8, 2008 Nov 27.
Article in English | MEDLINE | ID: mdl-18975884

ABSTRACT

Solvation of heterocyclic amines in CO(2)-expanded methanol (MeOH) has been explored with UV/vis spectroscopy and molecular dynamics (MD) simulations. A synergistic study of experiments and simulations allows exploration of solute and solvent effects on solvation and the molecular interactions that affect absorption. MeOH-nitrogen hydrogen bonds hinder the n-pi* transition; however, CO(2) addition causes a blue shift relative to MeOH because of Lewis acid/base interactions with nitrogen. Effects of solute structure are considered, and very different absorption spectra are obtained as nitrogen positions change. MD simulations provide detailed solvent clustering behavior around the solute molecules and show that the local solvent environment and ultimately the spectra are sensitive to the solute structure. This work demonstrates the importance of atomic-level information in determining the structure-property relationships between solute structure, local salvation, and solvatochromism.

10.
J Phys Chem B ; 110(47): 24101-11, 2006 Nov 30.
Article in English | MEDLINE | ID: mdl-17125382

ABSTRACT

Local solvation and transport effects in gas-expanded liquids (GXLs) are reported based on molecular simulation. GXLs were found to exhibit local density enhancements similar to those seen in supercritical fluids, although less dramatic. This approach was used as an alternative to a multiphase atomistic model for these mixtures by utilizing experimental results to describe the necessary fixed conditions for a locally (quasi-) stable molecular dynamics model of the (single) GXL phase. The local anisotropic pair correlation function, orientational correlation functions, and diffusion rates are reported for two systems: CO2-expanded methanol and CO2-expanded acetone at 298 K and pressures up to 6 MPa.


Subject(s)
Acetone/chemistry , Carbon Dioxide/chemistry , Complex Mixtures/chemistry , Computer Simulation , Gases , Methanol/chemistry , Air Pressure , Anisotropy , Complex Mixtures/analysis , Models, Molecular , Molecular Conformation , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...