Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38794439

ABSTRACT

The medicinal plant tulsi (Ocimum sanctum L.) is acknowledged for its invigorating and healing properties that enhance resilience to stress in various human and animal models by modulating antioxidant compounds. While extensive research has documented these effects in humans, the adaptogenic potential of tulsi in stressful in vitro plant systems has not been explored. This study aimed to elucidate the adaptogenic properties of tulsi leaf extract on the in vitro regeneration of tobacco leaf explants through an investigation of the indoleamines at different developmental stages. Shoot regeneration from leaf explants on the medium supplemented with tulsi extract (20%) was compared to the control, and the differences in indoleamine compounds were analyzed using ultra-performance liquid chromatography. Treatment of the explants with the extract resulted in an almost two-fold increase in the number of regenerants after four weeks of culture, and 9% of the regenerants resembled somatic embryo-like structures. The occurrence of browning in the extract-treated explants stopped on day 10, shoots began to develop, and a significant concentration of tryptamine and N-acetyl-serotonin accumulated. A comparative analysis of indoleamine compounds in intact and cut tobacco leaves also revealed the pivotal role of melatonin and 2-hydroxymelatonin functioning as antioxidants during stress adaptation. This study demonstrates that tulsi is a potent adaptogen that is capable of modulating plant morphogenesis in vitro, paving the way for further investigations into the role of adaptogens in plant stress biology.

2.
Plants (Basel) ; 12(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37447137

ABSTRACT

Climate change is forcing physiological changes, especially in temperate trees, in which the reproduction phase has been affected harshly, eventually resulting in poor performance. Erratic fluctuations during the flowering periods, predominantly in cold-sensitive, yet industry-desired (sourced), hazelnut cultivars have been causing at least a 10-fold decline in the nut yield. Indoleamines have been noted to provide protection during such abiotic stress conditions. In this study, we investigated the potential involvement of the indoleamine pathway in countering reproductive depression in cold-sensitive hazelnuts by blanketing the ground with wheat straw mulch. The female flower ratio; titers of tryptophan, serotonin, and melatonin; and indoleamine pathway gene regulation were the endpoints for assessing the effects of straw mulch. In the preceding year, we noted that the occurrence of phenological events through the modulation of indoleamines was necessitated via percolation of snowmelt into the rootzone. Otherwise, reproductive depression was noted, especially in harsh conditions, such as 'no snow' or when the rootzone was covered with a plastic sheet to disallow water percolation. When cold-sensitive hazelnut cultivars that were subjected to such deleterious treatments in the preceding years' experiments were treated with straw mulch, the female flower ratio was unaffected and remained on par with that of the cold-hardy locally adapted cultivars. Tryptophan accumulation improved in the (cold-sensitive) sourced cultivars treated with straw mulch and was available as serotonin to counter the cold stress. Lower titers of melatonin explained the slight improvement in female ratio in the sourced cultivars blanketed with straw mulch. ASMT gene regulation via straw mulch treatment emphasized its role in abiotic stress mitigation. A negative trend was noted when improved flowering was compared to the decreased expression of the ASMT gene. Horticultural changes, such as mulch, should provide mitigating solutions to relieve reproductive depression in cold-sensitive hazelnuts, alongside implications in other horticultural crops. The indoleamine toolkit (cellular markers) developed in this study provides insights into the mechanisms of cold sensitivity (abiotic stress) and plausible solutions, such as exogenous application of indoleamines, to propagate climate resilient plant materials with an enhanced capacity to mitigate abiotic stress conditions.

3.
Plants (Basel) ; 12(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36986922

ABSTRACT

Hazelnuts have recently gathered tremendous attention due to the expansion of the confectionary industry. However, the sourced cultivars fail to perform in initial phase of cultivation as they enter bare survival mode due to changes in climatic zones, for example, Southern Ontario, where the climate is continental, as opposed to the milder climate in Europe and Turkey. Indoleamines have been shown to counter abiotic stress and modulate vegetative and reproductive development of plants. Here, we examined the effect of indoleamines on the flowering response of the dormant stem cuttings of sourced hazelnut cultivars in controlled environment chambers. The stem cuttings were exposed to sudden summer-like conditions (abiotic stress) and the female flower development was assessed in relation to endogenous indoleamine titers. The sourced cultivars responded well to serotonin treatment by producing more flowers compared to the controls or other treatments. The probability of buds resulting in female flowers was highest in the middle region of the stem cuttings. It is interesting to note that the tryptamine titers of the locally adapted, and N-acetyl serotonin titers of native hazelnut cultivars, provided the best explanation for adaptation to the stress environment. Titers of both compounds were compromised in the sourced cultivars which resorted mostly to serotonin concentrations to counter the stress. The indoleamines tool kit identified in this study could be deployed in assessing cultivars for stress adaptation attributes.

4.
Plants (Basel) ; 11(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35161445

ABSTRACT

American chestnut (Castanea dentata), a native species of eastern North America, is an economically important deciduous hardwood tree that has been designated as endangered in Canada. The population of American chestnut trees has dwindled significantly across Southern Ontario due to chestnut blight and many of the surviving trees continue to show blight disease symptoms. American chestnut requires efficient strategies for propagation and preservation for species recovery. The objective of this study was to develop a long-term plant conservation program using micropropagation and cryopreservation protocols. An in vitro technology using a liquid-based temporary immersion system (TIS) was developed for micropropagation of American chestnut. The highest rate of shoot multiplication was observed in cultures grown in the DKW (Driver and Kuniyuki 1984) basal medium supplemented with 2.2 µM 6-benzylaminopurine and 1.0 µM gibberellic acid. More than 95% of proliferated microshoots, about 40-50 mm in size, developed roots after 30 days of culture within bioreactor vessels containing DKW basal medium supplemented with 15 µM 3-Indolebutyric acid. Rooted plantlets transplanted to the greenhouse had a survival efficiency of 82% after one month of growth. The cryopreservation protocol for germplasm preservation was developed through droplet vitrification of shoots. Optimal regeneration of shoot tips occurred from explants precultured on stepwise concentrations of sucrose and subsequent dehydration in PVS3 for 30 min. Cryopreserved shoot tips were regenerated to whole plants using pre-optimized conditions of micropropagation. This study confirms the potential of TIS for micropropagation in ex situ conservation and reintroduction of endangered American chestnuts and possibly other woody plant species.

5.
Plants (Basel) ; 10(10)2021 Oct 03.
Article in English | MEDLINE | ID: mdl-34685902

ABSTRACT

Yukon Draba (Draba yukonensis) is a small, short-lived perennial mustard species that is endemic to southwestern Yukon in Canada. This plant has been categorized as a species of Special Concern. It faces the threat of habitat loss due to natural and man-made causes and a population that is unevenly distributed to a few large and several small subpopulations in the area. It will therefore be judicious to undertake investigations on the conservation of this species to save it from further deterioration which may lead to its extinction. In this study, a protocol was developed for in vitro propagation and cryopreservation of Yukon Draba. The micropropagation protocol was optimized using shoot tips which enabled clonal propagation and in vitro storage of the species. Shoots grew best in the medium containing MS basal salts and had the highest multiplication with the addition of 2 µM 6-benzylaminopurine or 5 µM Kinetin with 3% sucrose. The addition of 10 µM Indole Butyric Acid (IBA) produced the highest number of adventitious roots on the shoots and the longest root length was observed at 2 µM IBA. The rooted plantlets were transferred to greenhouse and the highest survival (87.5%) was observed for the plantlets treated with a lower concentration of IBA (2 µM). Cryopreservation protocol was developed using the droplet-vitrification method for in vitro shoot tips. Two-week-old shoots had the highest survival and regrowth following exposure to plant vitrification solution 3 (PVS3) for 30 min, prior to direct immersion of the droplets into the liquid nitrogen. The optimized protocols for the micropropagation and cryopreservation may be useful for the long-term germplasm conservation and reintroduction of this species in its natural habitat.

6.
Plants (Basel) ; 10(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34579422

ABSTRACT

Cryopreservation is considered an ideal strategy for the long-term preservation of plant genetic resources. Significant progress was achieved over the past several decades, resulting in the successful cryopreservation of the genetic resources of diverse plant species. Cryopreservation procedures often employ in vitro culture techniques and require the precise control of several steps, such as the excision of explants, preculture, osmo- and cryoprotection, dehydration, freeze-thaw cycle, unloading, and post-culture for the recovery of plants. These processes create a stressful environment and cause reactive oxygen species (ROS)-induced oxidative stress, which is detrimental to the growth and regeneration of tissues and plants from cryopreserved tissues. ROS-induced oxidative stresses were documented to induce (epi)genetic and somatic variations. Therefore, the development of true-to-type regenerants of the source germplasm is of primary concern in the application of plant cryopreservation technology. The present article provides a comprehensive assessment of epigenetic and genetic integrity, metabolic stability, and field performance of cryopreserved plants developed in the past decade. Potential areas and the directions of future research in plant cryopreservation are also proposed.

7.
Int J Mol Sci ; 22(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361028

ABSTRACT

The growth and productivity of several apple rootstocks have been evaluated in various previous studies. However, limited information is available on their tolerance to osmotic stress. In the present study, the physiological and molecular responses as well as abscisic acid (ABA) levels were assessed in six apple rootstocks (M26, V3, G41, G935, B9 and B118) osmotically stressed with polyethylene glycol (PEG, 30%) application under greenhouse conditions. Our results showed that V3, G41, G935 and B9 had higher relative water content (RWC), and lower electrolyte leakage (EL) under stress conditions compared to M26 and B118. Additionally, water use efficiency (WUE) was higher in V3, G41 and B9 than M26, which might be partially due to the lower transpiration rate in these tolerant rootstocks. V3, G41 and B9 rootstocks also displayed high endogenous ABA levels which was combined with a reduction in stomatal conductance and decreased water loss. At the transcriptional level, genes involved in ABA-dependent and ABA-independent pathways, e.g., SnRK, DREB, ERD and MYC2, showed higher expression in V3, G41, G935 and B9 rootstocks compared to M26 in response to stress. In contrast, WRKY29 was down-regulated in response to stress in the tolerant rootstocks, and its expression was negatively correlated with ABA content and stomatal closure. Overall, the findings of this study showed that B9, V3 and G41 displayed better osmotic stress tolerance followed by G935 then M26 and B118 rootstocks.


Subject(s)
Gene Expression Regulation, Plant , Malus/genetics , Osmotic Pressure , Plant Proteins/genetics , Abscisic Acid/metabolism , Malus/metabolism , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism
8.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34445105

ABSTRACT

In grafted plants, the movement of long-distance signals from rootstocks can modulate the development and function of the scion. To understand the mechanisms by which tolerant rootstocks improve scion responses to osmotic stress (OS) conditions, mRNA transport of osmotic responsive genes (ORGs) was evaluated in a tomato/potato heterograft system. In this system, Solanum tuberosum was used as a rootstock and Solanum lycopersicum as a scion. We detected changes in the gene expression levels of 13 out of the 21 ORGs tested in the osmotically stressed plants; of these, only NPR1 transcripts were transported across the graft union under both normal and OS conditions. Importantly, OS increased the abundance of StNPR1 transcripts in the tomato scion. To examine mRNA mobility in transgrafted plants, StNPR1 and StDREB1 genes representing the mobile and non-mobile transcripts, respectively, were overexpressed in tobacco (Nicotiana tabacum). The evaluation of transgenic tobacco plants indicated that overexpression of these genes enhanced the growth and improved the physiological status of transgenic plants growing under OS conditions induced by NaCl, mannitol and polyethylene glycol (PEG). We also found that transgenic tobacco rootstocks increased the OS tolerance of the WT-scion. Indeed, WT scions on transgenic rootstocks had higher ORGs transcript levels than their counterparts on non-transgenic rootstocks. However, neither StNPR1 nor StDREB1 transcripts were transported from the transgenic rootstock to the wild-type (WT) tobacco scion, suggesting that other long-distance signals downstream these transgenes could have moved across the graft union leading to OS tolerance. Overall, our results signify the importance of StNPR1 and StDREB1 as two anticipated candidates for the development of stress-resilient crops through transgrafting technology.


Subject(s)
Nicotiana/genetics , Osmosis/physiology , Osmotic Pressure/physiology , Solanum lycopersicum/genetics , Solanum tuberosum/genetics , Plant Roots/genetics , Plants, Genetically Modified/genetics , Transgenes/genetics
9.
Eng Life Sci ; 20(3-4): 126-132, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32874176

ABSTRACT

Plant tissue culture techniques have been used to propagate horticultural crops at a commercial scale for more than three decades. However, due to the high cost it is generally only used for high value crops. To increase production efficiency and make micropropagation viable for a wider range of species, new approaches to address key steps of the process with high labor inputs need to be evaluated. For this study, a two-piece scaffold system was designed, prototyped using 3D printing, and tested to physically hold plants upright thereby facilitating liquid based rooting. This system was evaluated with Malus domestica, Betula lenta, and Musa sp. using static liquid culture as well as rocker based temporary immersion system and compared to rooting in semi-solid based medium as is commonly practiced. Significantly, earlier rooting was observed in all three species in liquid when compared to semi-solid culture system, and plants cultured in liquid on the rocker generally performed better than those in static liquid. In addition to quicker, more uniform rooting, reducing labor requirements, and preventing root damage. This newly designed system is simple, easy to use, will help to improve efficiency, and reduce the cost of micropropagation.

10.
J Pineal Res ; 64(2)2018 Mar.
Article in English | MEDLINE | ID: mdl-29149453

ABSTRACT

Melatonin and serotonin are important signaling and stress mitigating molecules that play important roles across growth and development in plants. Despite many well-documented responses, a systematic investigation of the entire metabolic pathway (tryptophan, tryptamine, and N-acetylserotonin) does not exist, leaving many open questions. The objective of this study was to determine the responses of Hypericum perforatum (L.) to melatonin, serotonin, and their metabolic precursors. Two well-characterized germplasm lines (#4 and 112) created by mutation and a haploid breeding program were compared to wild type to identify specific responses. Germplasm line 4 has lower regenerative and photosynthetic capacity than either wild type or line 112, and there are documented significant differences in the chemistry and physiology of lines 4 and 112. Supplementation of the culture media with tryptophan, tryptamine, N-acetylserotonin, serotonin, or melatonin partially reversed the regenerative recalcitrance and growth impairment of the germplasm lines. Quantification of phytohormones revealed crosstalk between the indoleamines and related phytohormones including cytokinin, salicylic acid, and abscisic acid. We hypothesize that melatonin and serotonin function in coordination with their metabolites in a cascade of phytochemical responses including multiple pathways and phytohormone networks to direct morphogenesis and protect photosynthesis in H. perforatum.


Subject(s)
Hypericum/growth & development , Hypericum/metabolism , Melatonin/metabolism , Plant Development/physiology , Serotonin/metabolism , Hypericum/drug effects , Melatonin/pharmacology , Plant Development/drug effects , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Seeds/growth & development , Serotonin/pharmacology , Signal Transduction/physiology
11.
Plant Methods ; 13: 6, 2017.
Article in English | MEDLINE | ID: mdl-28115979

ABSTRACT

BACKGROUND: Due to the complex process of designing and manufacturing new plant tissue culture vessels through conventional means there have been limited efforts to innovate improved designs. Further, development and availability of low cost, energy efficient LEDs of various spectra has made it a promising light source for plant growth in controlled environments. However, direct replacement of conventional lighting sources with LEDs does not address problems with uniformity, spectral control, or the challenges in conducting statistically valid experiments to assess the effects of light. Prototyping using 3D printing and LED based light sources could help overcome these limitations and lead to improved culture systems. RESULTS: A modular culture vessel design in which the fluence rate and spectrum of light are independently controlled was designed, prototyped using 3D printing, and evaluated for plant growth. This design is compatible with semi-solid and liquid based culture systems. Observations on morphology, chlorophyll content, and chlorophyll fluorescence based stress parameters from in vitro plants cultured under different light spectra with similar overall fluence rate indicated different responses in Nicotiana tabacum and Artemisia annua plantlets. This experiment validates the utility of 3D printing to design and test functional vessels and demonstrated that optimal light spectra for in vitro plant growth is species-specific. CONCLUSIONS: 3D printing was successfully used to prototype novel culture vessels with independently controlled variable fluence rate/spectra LED lighting. This system addresses several limitations associated with current lighting systems, providing more uniform lighting and allowing proper replication/randomization for experimental plant biology while increasing energy efficiency. A complete procedure including the design and prototyping of a culture vessel using 3D printing, commercial scale injection molding of the prototype, and conducting a properly replicated experiment are discussed. This open source design has the scope for further improvement and adaptation and demonstrates the power of 3D printing to improve the design of culture systems.

12.
Plant Cell Rep ; 35(1): 91-102, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26400684

ABSTRACT

KEY MESSAGE: Essential oils have growth regulating properties comparable to the well-documented methyl jasmonate and may be involved in localized and/or airborne plant communication. Aromatic plants employ large amounts of resources to produce essential oils. Some essential oils are known to contain compounds with plant growth regulating activities. However, the potential capacity of essential oils as airborne molecules able to modulate plant growth/development has remained uninvestigated. Here, we demonstrate that essential oils from eight taxonomically diverse plants applied in their airborne state inhibited auxin-induced elongation of Pisum sativum hypocotyls and Avena sativa coleoptiles. This response was also observed using five monoterpenes commonly found in essential oils as well as isoprene, the basic building block of terpenes. Upon transfer to ambient conditions, A. sativa coleoptiles resumed elongation, demonstrating an antagonistic relationship rather than toxicity. Inclusion of essential oils, monoterpenes, or isoprene into the headspace of culture vessels induced abnormal cellular growth along hypocotyls of Arabidopsis thaliana. These responses were also elicited by methyl jasmonate (MeJA); however, where methyl jasmonate inhibited root growth essential oils did not. Gene expression studies in A. thaliana also demonstrated differences between the MeJA and isoprenoid responses. This series of experiments clearly demonstrate that essential oils and their isoprenoid components interact with endogenous plant growth regulators when applied directly or as volatile components in the headspace. The similarities between isoprenoid and MeJA responses suggest that they may act in plant defence signalling. While further studies are needed to determine the ecological and evolutionary significance, the results of this study and the specialized anatomy associated with aromatic plants suggest that essential oils may act as airborne signalling molecules.


Subject(s)
Arabidopsis/drug effects , Avena/drug effects , Cuminum/chemistry , Oils, Volatile/pharmacology , Pisum sativum/drug effects , Plant Oils/pharmacology , Acetates/pharmacology , Arabidopsis/genetics , Arabidopsis/growth & development , Avena/genetics , Avena/growth & development , Butadienes/pharmacology , Cyclopentanes/pharmacology , Gene Expression Regulation, Plant , Hemiterpenes/pharmacology , Hypocotyl/drug effects , Hypocotyl/genetics , Hypocotyl/growth & development , Indoleacetic Acids/metabolism , Oxylipins/pharmacology , Pisum sativum/genetics , Pisum sativum/growth & development , Pentanes/pharmacology , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Signal Transduction/drug effects , Terpenes/pharmacology
13.
J Pineal Res ; 56(3): 238-45, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24350934

ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine) has been implicated in abiotic and biotic stress tolerance in plants. However, information on the effects of melatonin in cold-stress tolerance in vivo is limited. In this study, the effect of melatonin was investigated in the model plant Arabidopsis thaliana challenged with a cold stress at 4°C for 72 and 120 hr. Melatonin-treated plants (10 and 30 µm) had significantly higher fresh weight, primary root length, and shoot height compared with the nontreated plants. To aid in the understanding of the role of melatonin in alleviating cold stress, we investigated the effects of melatonin treatment on the expression of cold-related genes. Melatonin up-regulated the expression of C-repeat-binding factors (CBFs)/Drought Response Element Binding factors (DREBs), a cold-responsive gene, COR15a, a transcription factor involved in freezing and drought-stress tolerance CAMTA1 and transcription activators of reactive oxygen species (ROS)-related antioxidant genes, ZAT10 and ZAT12, following cold stress. The up-regulation of cold signaling genes by melatonin may stimulate the biosynthesis of cold-protecting compounds and contribute to the increased growth of plants treated with exogenous melatonin under cold stress.


Subject(s)
Cold Temperature/adverse effects , Melatonin/pharmacology , Stress, Physiological/drug effects , Arabidopsis , Arabidopsis Proteins/biosynthesis , Calcium-Binding Proteins/biosynthesis , Gene Expression Regulation, Plant , Trans-Activators/biosynthesis , Transcription Factors/biosynthesis , Up-Regulation
14.
J Pineal Res ; 55(4): 435-42, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24117864

ABSTRACT

Climate change and global migrations of people and goods have exposed trees to new diseases and abiotic challenges that threaten the survival of species. In vitro germplasm storage via cryopreservation is an effective tool to ensure conservation of tree species, but plant cells and tissues are exposed to multiple stresses during the cryopreservation process. The current study was designed to evaluate the potential of melatonin to improve survival through the process of cryopreservation. Shoot tips of in vitro-grown plantlets and dormant winter buds of American elm were successfully cryopreserved in liquid nitrogen (LN) at -196°C under controlled environmental conditions following melatonin treatment and cold acclimation with either vitrification or encapsulation­vitrification protocols. Explants had optimal regrowth following cryopreservation when treated with the plant vitrification solution#2 (PVS2) for 10 min. Supplementation of both preculture and regrowth media with melatonin significantly enhanced regrowth of frozen shoots compared with the untreated control (P < 0.05). Approximately 80­100% of shoot explants grew under optimized conditions using melatonin-enriched media. Shoot tips of dormant winter buds consistently produced nearly 100% regrowth with both techniques. The main steps of the optimized protocol are14-day cold-acclimated cultures exposed to preculture medium with 0.1­0.5 lM melatonin for 24 hr, application of PVS2 for 10 min, rapid cooling in LN, rapid rewarming, removal of cryoprotectants, and recovery on a medium supplemented with 0.1­0.5 lM melatonin. Our results demonstrate the usefulness of the antioxidant melatonin for long-term storage of naturally resistant elm germplasm.


Subject(s)
Cryopreservation , Melatonin/pharmacology , Plant Shoots/drug effects , Ulmus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...