Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Viruses ; 16(8)2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39205289

ABSTRACT

Vesicular stomatitis (VS) is a vector-borne livestock disease caused by the vesicular stomatitis New Jersey virus (VSNJV). This study presents the first application of an SEIR-SEI compartmental model to analyze VSNJV transmission dynamics. Focusing on the 2014-2015 outbreak in the United States, the model integrates vertebrate hosts and insect vector demographics while accounting for heterogeneous competency within the populations and observation bias in documented disease cases. Key epidemiological parameters were estimated using Bayesian inference and Markov chain Monte Carlo (MCMC) methods, including the force of infection, effective reproduction number (Rt), and incubation periods. The model revealed significant underreporting, with only 10-24% of infections documented, 23% of which presented with clinical symptoms. These findings underscore the importance of including competence and imperfect detection in disease models to depict outbreak dynamics and inform effective control strategies accurately. As a baseline model, this SEIR-SEI implementation is intended to serve as a foundation for future refinements and expansions to improve our understanding of VS dynamics. Enhanced surveillance and targeted interventions are recommended to manage future VS outbreaks.


Subject(s)
Disease Outbreaks , Vesicular Stomatitis , United States/epidemiology , Vesicular Stomatitis/epidemiology , Vesicular Stomatitis/virology , Animals , Vesicular stomatitis New Jersey virus/genetics , Bayes Theorem , Cattle , Insect Vectors/virology , Livestock/virology
2.
Viruses ; 16(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39066280

ABSTRACT

We conducted an integrative analysis to elucidate the spatial epidemiological patterns of the Vesicular Stomatitis New Jersey virus (VSNJV) during the 2014-15 epizootic cycle in the United States (US). Using georeferenced VSNJV genomics data, confirmed vesicular stomatitis (VS) disease cases from surveillance, and a suite of environmental factors, our study assessed environmental and phylogenetic similarity to compare VS cases reported in 2014 and 2015. Despite uncertainties from incomplete virus sampling and cross-scale spatial processes, patterns suggested multiple independent re-invasion events concurrent with potential viral overwintering between sequential seasons. Our findings pointed to a geographically defined southern virus pool at the US-Mexico interface as the source of VSNJV invasions and overwintering sites. Phylodynamic analysis demonstrated an increase in virus diversity before a rise in case numbers and a pronounced reduction in virus diversity during the winter season, indicative of a genetic bottleneck and a significant narrowing of virus variation between the summer outbreak seasons. Environment-vector interactions underscored the central role of meta-population dynamics in driving disease spread. These insights emphasize the necessity for location- and time-specific management practices, including rapid response, movement restrictions, vector control, and other targeted interventions.


Subject(s)
Disease Outbreaks , Genome, Viral , Phylogeny , Seasons , Vesicular Stomatitis , Vesicular stomatitis New Jersey virus , Animals , Vesicular Stomatitis/virology , Vesicular Stomatitis/epidemiology , Vesicular stomatitis New Jersey virus/genetics , United States/epidemiology , Genomics , Geography , Cattle , Genetic Variation , Cattle Diseases/virology , Cattle Diseases/epidemiology
3.
Curr Trop Med Rep ; 9(4): 130-139, 2022.
Article in English | MEDLINE | ID: mdl-36105115

ABSTRACT

Purpose of Review: Culicoides biting midges transmit several pathogens of veterinary importance in North America, but the vector status of many midge species is unresolved. Additionally, the available evidence of vector competence in these species is scattered and variable. The purpose of this review is to summarize current knowledge on confirmed and putative North American Culicoides arbovirus vectors. Recent Findings: While the vector status of Culicoides sonorensis (EHDV, BTV, VSV) and Culicoides insignis (BTV) are well established, several other potential vector species have been recently identified. Frequently, these species are implicated based primarily on host-feeding, abundance, and/or detection of arboviruses from field-collected insects, and often lack laboratory infection and transmission data necessary to fully confirm their vector status. Recent genetic studies have also indicated that some wide-ranging species likely represent several cryptic species, further complicating our understanding of their vector status. Summary: In most cases, laboratory evidence needed to fully understand the vector status of the putative Culicoides vectors is absent; however, it appears that several species are likely contributing to the transmission of arboviruses in North America.

4.
Ecol Evol ; 11(9): 4874-4886, 2021 May.
Article in English | MEDLINE | ID: mdl-33976855

ABSTRACT

The ecological success of ants has made them abundant in most environments, yet inter- and intraspecific competition usually limit nest density for a given population. Most invasive ant populations circumvent this limitation through a supercolonial structure, eliminating intraspecific competition through a loss of nestmate recognition and lack of aggression toward non-nestmates. Native to South America, Brachymyrmex patagonicus has recently invaded many locations worldwide, with invasive populations described as extremely large and dense. Yet, in contrast with most invasive ants, this species exhibits a multicolonial structure, whereby each colony occupies a single nest. Here, we investigated the interplay between genetic diversity, chemical recognition, and aggressive behaviors in an invasive population of B. patagonicus. We found that, in its invasive range, this species reaches a high nest density with individual colonies located every 2.5 m and that colony boundaries are maintained through aggression toward non-nestmates. This recognition and antagonism toward non-nestmates is mediated by chemical differentiation between colonies, as different colonies exhibit distinct chemical profiles. We highlighted that the level of aggression between colonies is correlated with their degree of genetic difference, but not their overall chemical differentiation. This may suggest that only a few chemical compounds influence nestmate recognition in this species or that weak chemical differences are sufficient to elicit aggression. Overall, this study demonstrates that invasive ant populations can reach high densities despite a multicolonial structure with strong aggression between colonies, raising questions about the factors underlying their ecological success and mitigating negative consequences of competitive interactions.

5.
J Med Entomol ; 57(4): 1262-1269, 2020 07 04.
Article in English | MEDLINE | ID: mdl-31961929

ABSTRACT

Culicoides midges vector numerous veterinary and human pathogens. Many of these diseases lack effective therapeutic treatments or vaccines to limit transmission. The only effective approach to limit disease transmission is vector control. However, current vector control for Culicoides midges is complicated by the biology of many Culicoides species and is not always effective at reducing midge populations and impacting disease transmission. The endosymbiont Wolbachia pipientis Hertig may offer an alternative control approach to limit disease transmission and affect Culicoides populations. Here the detection of Wolbachia infections in nine species of Culicoides midges is reported. Infections were detected at low densities using qPCR. Wolbachia infections were confirmed with the sequencing of a partial region of the 16S gene. Fluorescence in situ hybridization of Culicoides sonorensis Wirth and Jones adults and dissected ovaries confirm the presence of Wolbachia infections in an important vector of Bluetongue and Epizootic hemorrhagic disease viruses. The presence of Wolbachia in Culicoides populations in the United States suggests the need for further investigation of Wolbachia as a strategy to limit transmission of diseases vectored by Culicoides midges.


Subject(s)
Ceratopogonidae/microbiology , Wolbachia/isolation & purification , Animals , Female , In Situ Hybridization, Fluorescence , Male , Real-Time Polymerase Chain Reaction , United States , Wolbachia/classification
SELECTION OF CITATIONS
SEARCH DETAIL