Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Disabil Rehabil ; : 1-9, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39154357

ABSTRACT

PURPOSE: Recently, the Concussion James Lind Alliance Priority Setting Partnership (JLAPSP) (Canada) identified serious research gaps regarding diagnosis, management, and access to effective rehabilitation for concussion/mild traumatic brain injury (mTBI). Our aim was to determine if the same research priorities are important to Australian health professionals working in the concussion/mTBI field. MATERIALS AND METHODS: A survey was distributed via professional networks, social media, professional group listservs, a research project noticeboard, and at conferences. It comprised of 25 of the highest ranked concussion research questions from the JLAPSP. We examined how professionals ranked the research questions and analyzed variation in ranking by clinical role and concussion/mTBI work experience. RESULTS: Our sample of 187 participants included medical and allied health professionals. Most participants were occupational therapists (22%), physiotherapists (18%), neuropsychologists (17%), and worked in Victoria (47%), New South Whales (18%), or Queensland (15%) in metropolitan areas. Health professionals ranked three research questions highest: identifying methods to predict prolonged recovery; effectiveness of early referral and treatment by a specialized concussion/mTBI team; and implementation studies on upskilling healthcare workers. CONCLUSIONS: The research priorities identified can guide research efforts to improve the assessment, management, and rehabilitation of individuals with concussion/mTBI in Australia.


Health professionals with experience in the assessment and rehabilitation of adults with concussions overwhelmingly agree that there is a need for further research to understand the prognosis and the effectiveness of specialized rehabilitation clinics.The role of healthcare providers in supporting recovery and the long-term health implications of suffering a concussion was identified as a priority.Both pre-clinical and clinical research are identified priorities to determine the effectiveness of biomarkers for concussion and return to activity.Health professionals also call for clinical trials testing management protocols, and implementation trials to support translation of clinical guidelines into practice to understand the role of healthcare providers in rehabilitation.

2.
JAMA Netw Open ; 7(6): e2415983, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38848061

ABSTRACT

Importance: Sport-related concussion (SRC), a form of mild traumatic brain injury, is a prevalent occurrence in collision sports. There are no well-established approaches for tracking neurobiologic recovery after SRC. Objective: To examine the levels of serum glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) in Australian football athletes who experience SRC. Design, Setting, and Participants: A cohort study recruiting from April 10, 2021, to September 17, 2022, was conducted through the Victorian Amateur Football Association, Melbourne, Australia. Participants included adult Australian football players with or without SRC. Data analysis was performed from May 26, 2023, to March 27, 2024. Exposure: Sport-related concussion, defined as at least 1 observable sign and/or 2 or more symptoms. Main Outcomes and Measures: Primary outcomes were serum GFAP and NfL levels at 24 hours, and 1, 2, 4, 6, 8, 12, and 26 weeks. Secondary outcomes were symptoms, cognitive performance, and return to training times. Results: Eighty-one individuals with SRC (median age, 22.8 [IQR, 21.3-26.0] years; 89% male) and 56 control individuals (median age, 24.6 [IQR, 22.4-27.3] years; 96% male) completed a total of 945 of 1057 eligible testing sessions. Compared with control participants, those with SRC exhibited higher GFAP levels at 24 hours (mean difference [MD] in natural log, pg/mL, 0.66 [95% CI, 0.50-0.82]) and 4 weeks (MD, 0.17 [95% CI, 0.02-0.32]), and NfL from 1 to 12 weeks (1-week MD, 0.31 [95% CI, 0.12-0.51]; 2-week MD, 0.38 [95% CI, 0.19-0.58]; 4-week MD, 0.31 [95% CI, 0.12-0.51]; 6-week MD, 0.27 [95% CI, 0.07-0.47]; 8-week MD, 0.36 [95% CI, 0.15-0.56]; and 12-week MD, 0.25 [95% CI, 0.04-0.46]). Growth mixture modeling identified 2 GFAP subgroups: extreme prolonged (16%) and moderate transient (84%). For NfL, 3 subgroups were identified: extreme prolonged (7%), moderate prolonged (15%), and minimal or no change (78%). Individuals with SRC who reported loss of consciousness (LOC) (33% of SRC cases) had higher GFAP at 24 hours (MD, 1.01 [95% CI, 0.77-1.24]), 1 week (MD, 0.27 [95% CI, 0.06-0.49]), 2 weeks (MD, 0.21 [95% CI, 0.004-0.42]) and 4 weeks (MD, 0.34 [95% CI, 0.13-0.55]), and higher NfL from 1 week to 12 weeks (1-week MD, 0.73 [95% CI, 0.42-1.03]; 2-week MD, 0.91 [95% CI, 0.61-1.21]; 4-week MD, 0.90 [95% CI, 0.59-1.20]; 6-week MD, 0.81 [95% CI, 0.50-1.13]; 8-week MD, 0.73 [95% CI, 0.42-1.04]; and 12-week MD, 0.54 [95% CI, 0.22-0.85]) compared with SRC participants without LOC. Return to training times were longer in the GFAP extreme compared with moderate subgroup (incident rate ratio [IRR], 1.99 [95% CI, 1.69-2.34]; NfL extreme (IRR, 3.24 [95% CI, 2.63-3.97]) and moderate (IRR, 1.43 [95% CI, 1.18-1.72]) subgroups compared with the minimal subgroup, and for individuals with LOC compared with those without LOC (IRR, 1.65 [95% CI, 1.41-1.93]). Conclusions and Relevance: In this cohort study, a subset of SRC cases, particularly those with LOC, showed heightened and prolonged increases in GFAP and NfL levels, that persisted for at least 4 weeks. These findings suggest that serial biomarker measurement could identify such cases, guiding return to play decisions based on neurobiologic recovery. While further investigation is warranted, the association between prolonged biomarker elevations and LOC may support the use of more conservative return to play timelines for athletes with this clinical feature.


Subject(s)
Athletic Injuries , Biomarkers , Brain Concussion , Glial Fibrillary Acidic Protein , Humans , Brain Concussion/blood , Brain Concussion/physiopathology , Brain Concussion/complications , Male , Female , Biomarkers/blood , Adult , Glial Fibrillary Acidic Protein/blood , Athletic Injuries/blood , Athletic Injuries/complications , Athletic Injuries/physiopathology , Young Adult , Football/injuries , Australia , Neurofilament Proteins/blood , Cohort Studies , Recovery of Function/physiology , Athletes/statistics & numerical data
3.
Neurotrauma Rep ; 5(1): 74-80, 2024.
Article in English | MEDLINE | ID: mdl-38463419

ABSTRACT

Traumatic brain injuries (TBIs) and concussions are prevalent in collision sports, and there is evidence that levels of exposure to such sports may increase the risk of neurological abnormalities. Elevated levels of fluid-based biomarkers have been observed after concussions or among athletes with a history of participating in collision sports, and certain biomarkers exhibit sensitivity toward neurodegeneration. This study investigated a cohort of 28 male amateur athletes competing in "Masters" competitions for persons >35 years of age. The primary objective of this study was to compare the levels of blood and saliva biomarkers associated with brain injury, inflammation, aging, and neurodegeneration between athletes with an extensive history of collision sport participation (i.e., median = 27 years; interquartile range = 18-44, minimum = 8) and those with no history. Plasma proteins associated with neural damage and neurodegeneration were measured using Simoa® assays, and saliva was analyzed for markers associated with inflammation and telomere length using quantitative real-time polymerase chain reaction. There were no significant differences between collision and non-collision sport athletes for plasma levels of glial fibrillary acidic protein, neurofilament light, ubiquitin C-terminal hydrolase L1, tau, tau phosphorylated at threonine 181, and brain-derived neurotrophic factor. Moreover, salivary levels of genes associated with inflammation and telomere length were similar between groups. There were no significant differences between groups in symptom frequency or severity on the Sport Concussion Assessment Tool-5th Edition. Overall, these findings provide preliminary evidence that biomarkers associated with neural tissue damage, neurodegeneration, and inflammation may not exhibit significant alterations in asymptomatic amateur athletes with an extensive history of amateur collision sport participation.

4.
NMR Biomed ; 37(8): e5142, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38494895

ABSTRACT

Integrating datasets from multiple sites and scanners can increase statistical power for neuroimaging studies but can also introduce significant inter-site confounds. We evaluated the effectiveness of ComBat, an empirical Bayes approach, to combine longitudinal preclinical MRI data acquired at 4.7 or 9.4 T at two different sites in Australia. Male Sprague Dawley rats underwent MRI on Days 2, 9, 28, and 150 following moderate/severe traumatic brain injury (TBI) or sham injury as part of Project 1 of the NIH/NINDS-funded Centre Without Walls EpiBioS4Rx project. Diffusion-weighted and multiple-gradient-echo images were acquired, and outcomes included QSM, FA, and ADC. Acute injury measures including apnea and self-righting reflex were consistent between sites. Mixed-effect analysis of ipsilateral and contralateral corpus callosum (CC) summary values revealed a significant effect of site on FA and ADC values, which was removed following ComBat harmonization. Bland-Altman plots for each metric showed reduced variability across sites following ComBat harmonization, including for QSM, despite appearing to be largely unaffected by inter-site differences and no effect of site observed. Following harmonization, the combined inter-site data revealed significant differences in the imaging metrics consistent with previously reported outcomes. TBI resulted in significantly reduced FA and increased susceptibility in the ipsilateral CC, and significantly reduced FA in the contralateral CC compared with sham-injured rats. Additionally, TBI rats also exhibited a reversal in ipsilateral CC ADC values over time with significantly reduced ADC at Day 9, followed by increased ADC 150 days after injury. Our findings demonstrate the need for harmonizing multi-site preclinical MRI data and show that this can be successfully achieved using ComBat while preserving phenotypical changes due to TBI.


Subject(s)
Brain Injuries, Traumatic , Magnetic Resonance Imaging , Rats, Sprague-Dawley , Animals , Brain Injuries, Traumatic/diagnostic imaging , Male , Rats , Bayes Theorem
5.
J Neurotrauma ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38323539

ABSTRACT

Intimate partner violence (IPV) is a significant, global public health concern. Women, individuals with historically underrepresented identities, and disabilities are at high risk for IPV and tend to experience severe injuries. There has been growing concern about the risk of exposure to IPV-related head trauma, resulting in IPV-related brain injury (IPV-BI), and its health consequences. Past work suggests that a significant proportion of women exposed to IPV experience IPV-BI, likely representing a distinct phenotype compared with BI of other etiologies. An IPV-BI often co-occurs with psychological trauma and mental health complaints, leading to unique issues related to identifying, prognosticating, and managing IPV-BI outcomes. The goal of this review is to identify important gaps in research and clinical practice in IPV-BI and suggest potential solutions to address them. We summarize IPV research in five key priority areas: (1) unique considerations for IPV-BI study design; (2) understanding non-fatal strangulation as a form of BI; (3) identifying objective biomarkers of IPV-BI; (4) consideration of the chronicity, cumulative and late effects of IPV-BI; and (5) BI as a risk factor for IPV engagement. Our review concludes with a call to action to help investigators develop ecologically valid research studies addressing the identified clinical-research knowledge gaps and strategies to improve care in individuals exposed to IPV-BI. By reducing the current gaps and answering these calls to action, we will approach IPV-BI in a trauma-informed manner, ultimately improving outcomes and quality of life for those impacted by IPV-BI.

6.
J Neuroinflammation ; 21(1): 14, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195485

ABSTRACT

Traumatic brain injury (TBI) is a key contributor to global morbidity that lacks effective treatments. Microbial infections are common in TBI patients, and their presence could modify the physiological response to TBI. It is estimated that one-third of the human population is incurably infected with the feline-borne parasite, Toxoplasma gondii, which can invade the central nervous system and result in chronic low-grade neuroinflammation, oxidative stress, and excitotoxicity-all of which are also important pathophysiological processes in TBI. Considering the large number of TBI patients that have a pre-existing T. gondii infection prior to injury, and the potential mechanistic synergies between the conditions, this study investigated how a pre-existing T. gondii infection modified TBI outcomes across acute, sub-acute and chronic recovery in male and female mice. Gene expression analysis of brain tissue found that neuroinflammation and immune cell markers were amplified in the combined T. gondii + TBI setting in both males and females as early as 2-h post-injury. Glutamatergic, neurotoxic, and oxidative stress markers were altered in a sex-specific manner in T. gondii + TBI mice. Structural MRI found that male, but not female, T. gondii + TBI mice had a significantly larger lesion size compared to their uninfected counterparts at 18-weeks post-injury. Similarly, diffusion MRI revealed that T. gondii + TBI mice had exacerbated white matter tract abnormalities, particularly in male mice. These novel findings indicate that a pre-existing T. gondii infection affects the pathophysiological aftermath of TBI in a sex-dependent manner, and may be an important modifier to consider in the care and prognostication of TBI patients.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Toxoplasmosis , Humans , Animals , Cats , Female , Male , Mice , Neuroinflammatory Diseases , Brain Injuries/complications , Brain Injuries, Traumatic/complications , Toxoplasmosis/complications , Brain
7.
Sci Rep ; 14(1): 1728, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38242923

ABSTRACT

Traumatic brain injury (TBI) alters brain network connectivity. Structural covariance networks (SCNs) reflect morphological covariation between brain regions. SCNs may elucidate how altered brain network topology in TBI influences long-term outcomes. Here, we assessed whether SCN organisation is altered in individuals with chronic moderate-severe TBI (≥ 10 years post-injury) and associations with cognitive performance. This case-control study included fifty individuals with chronic moderate-severe TBI compared to 75 healthy controls recruited from an ongoing longitudinal head injury outcome study. SCNs were constructed using grey matter volume measurements from T1-weighted MRI images. Global and regional SCN organisation in relation to group membership and cognitive ability was examined using regression analyses. Globally, TBI participants had reduced small-worldness, longer characteristic path length, higher clustering, and higher modularity globally (p < 0.05). Regionally, TBI participants had greater betweenness centrality (p < 0.05) in frontal and central areas of the cortex. No significant associations were observed between global network measures and cognitive ability in participants with TBI (p > 0.05). Chronic moderate-severe TBI was associated with a shift towards a more segregated global network topology and altered organisation in frontal and central brain regions. There was no evidence that SCNs are associated with cognition.


Subject(s)
Brain Injuries, Traumatic , Brain Injury, Chronic , Humans , Gray Matter/diagnostic imaging , Case-Control Studies , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging
8.
Mol Psychiatry ; 29(3): 671-685, 2024 03.
Article in English | MEDLINE | ID: mdl-38177350

ABSTRACT

Acquired brain injury (ABI), such as traumatic brain injury and stroke, is a leading cause of disability worldwide, resulting in debilitating acute and chronic symptoms, as well as an increased risk of developing neurological and neurodegenerative disorders. These symptoms can stem from various neurophysiological insults, including neuroinflammation, oxidative stress, imbalances in neurotransmission, and impaired neuroplasticity. Despite advancements in medical technology and treatment interventions, managing ABI remains a significant challenge. Emerging evidence suggests that psychedelics may rapidly improve neurobehavioral outcomes in patients with various disorders that share physiological similarities with ABI. However, research specifically focussed on psychedelics for ABI is limited. This narrative literature review explores the neurochemical properties of psychedelics as a therapeutic intervention for ABI, with a focus on serotonin receptors, sigma-1 receptors, and neurotrophic signalling associated with neuroprotection, neuroplasticity, and neuroinflammation. The promotion of neuronal growth, cell survival, and anti-inflammatory properties exhibited by psychedelics strongly supports their potential benefit in managing ABI. Further research and translational efforts are required to elucidate their therapeutic mechanisms of action and to evaluate their effectiveness in treating the acute and chronic phases of ABI.


Subject(s)
Brain Injuries , Hallucinogens , Neuronal Plasticity , Humans , Hallucinogens/pharmacology , Hallucinogens/therapeutic use , Neuronal Plasticity/drug effects , Brain Injuries/drug therapy , Brain Injuries/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Animals , Receptors, Serotonin/metabolism , Receptors, Serotonin/drug effects , Receptors, sigma/metabolism , Sigma-1 Receptor , Neuroprotection/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
9.
J Neurotrauma ; 41(1-2): 222-243, 2024 01.
Article in English | MEDLINE | ID: mdl-36950806

ABSTRACT

Sodium selenate (SS) activates protein phosphatase 2 (PP2A) and reduces phosphorylated tau (pTAU) and late post-traumatic seizures after lateral fluid percussion injury (LFPI). In EpiBioS4Rx Project 2, a multi-center international study for post-traumatic targets, biomarkers, and treatments, we tested the target relevance and modification by SS of pTAU forms and PP2A and in the LFPI model, at two sites: Einstein and Melbourne. In Experiment 1, adult male rats were assigned to LFPI and sham (both sites) and naïve controls (Einstein). Motor function was monitored by neuroscores. Brains were studied with immunohistochemistry (IHC), Western blots (WBs), or PP2A activity assay, from 2 days to 8 weeks post-operatively. In Experiment 2, LFPI rats received SS for 7 days (SS0.33: 0.33 mg/kg/day; SS1: 1 mg/kg/day, subcutaneously) or vehicle (Veh) post-LFPI and pTAU, PR55 expression, or PP2A activity were studied at 2 days and 1 week (on treatment), or 2 weeks (1 week off treatment). Plasma selenium and SS levels were measured. In Experiment 1 IHC, LFPI rats had higher cortical pTAU-Ser202/Thr205-immunoreactivity (AT8-ir) and pTAU-Ser199/202-ir at 2 days, and pTAU-Thr231-ir (AT180-ir) at 2 days, 2 weeks, and 8 weeks, ipsilaterally to LFPI, than controls. LFPI-2d rats also had higher AT8/total-TAU5-ir in cortical extracts ipsilateral to the lesion (WB). PP2A (PR55-ir) showed time- and region-dependent changes in IHC, but not in WB. PP2A activity was lower in LFPI-1wk than in sham rats. In Experiment 2, SS did not affect neuroscores or cellular AT8-ir, AT180-ir, or PR55-ir in IHC. In WB, total cortical AT8/total-TAU-ir was lower in SS0.33 and SS1 LFPI rats than in Veh rats (2 days, 1 week); total cortical PR55-ir (WB) and PP2A activity were higher in SS1 than Veh rats (2 days). SS dose dependently increased plasma selenium and SS levels. Concordant across-sites data confirm time and pTAU form-specific cortical increases ipsilateral to LFPI. The discordant SS effects may either suggest SS-induced reduction in the numbers of cells with increased pTAU-ir, need for longer treatment, or the involvement of other mechanisms of action.


Subject(s)
Brain Injuries, Traumatic , Selenium , Rats , Male , Animals , Selenic Acid/pharmacology , Phosphorylation , tau Proteins/metabolism , Cerebral Cortex/metabolism
10.
J Cereb Blood Flow Metab ; 44(4): 542-555, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37933736

ABSTRACT

Mild traumatic brain injury (mTBI) involves damage to the cerebrovascular system. Vascular endothelial growth factor-A (VEGF-A) is an important modulator of vascular health and VEGF-A promotes the brain's ability to recover after more severe forms of brain injury; however, the role of VEGF-A in mTBI remains poorly understood. Bevacizumab (BEV) is a monoclonal antibody that binds to VEGF-A and neutralises its actions. To better understand the role of VEGF-A in mTBI recovery, this study examined how BEV treatment affected outcomes in rats given a mTBI. Adult Sprague-Dawley rats were assigned to sham-injury + vehicle treatment (VEH), sham-injury + BEV treatment, mTBI + VEH treatment, mTBI + BEV treatment groups. Treatment was administered intracerebroventricularly via a cannula beginning at the time of injury and continuing until the end of the study. Rats underwent behavioral testing after injury and were euthanized on day 11. In both females and males, BEV had a negative impact on cognitive function. mTBI and BEV treatment increased the expression of inflammatory markers in females. In males, BEV treatment altered markers related to hypoxia and vascular health. These novel findings of sex-specific responses to BEV and mTBI provide important insights into the role of VEGF-A in mTBI.


Subject(s)
Brain Concussion , Male , Female , Rats , Animals , Bevacizumab , Vascular Endothelial Growth Factor A/metabolism , Rats, Sprague-Dawley , Disease Models, Animal
11.
Epilepsia ; 65(2): 511-526, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052475

ABSTRACT

OBJECTIVE: This study was undertaken to assess reproducibility of the epilepsy outcome and phenotype in a lateral fluid percussion model of posttraumatic epilepsy (PTE) across three study sites. METHODS: A total of 525 adult male Sprague Dawley rats were randomized to lateral fluid percussion-induced brain injury (FPI) or sham operation. Of these, 264 were assigned to magnetic resonance imaging (MRI cohort, 43 sham, 221 traumatic brain injury [TBI]) and 261 to electrophysiological follow-up (EEG cohort, 41 sham, 220 TBI). A major effort was made to harmonize the rats, materials, equipment, procedures, and monitoring systems. On the 7th post-TBI month, rats were video-EEG monitored for epilepsy diagnosis. RESULTS: A total of 245 rats were video-EEG phenotyped for epilepsy on the 7th postinjury month (121 in MRI cohort, 124 in EEG cohort). In the whole cohort (n = 245), the prevalence of PTE in rats with TBI was 22%, being 27% in the MRI and 18% in the EEG cohort (p > .05). Prevalence of PTE did not differ between the three study sites (p > .05). The average seizure frequency was .317 ± .725 seizures/day at University of Eastern Finland (UEF; Finland), .085 ± .067 at Monash University (Monash; Australia), and .299 ± .266 at University of California, Los Angeles (UCLA; USA; p < .01 as compared to Monash). The average seizure duration did not differ between UEF (104 ± 48 s), Monash (90 ± 33 s), and UCLA (105 ± 473 s; p > .05). Of the 219 seizures, 53% occurred as part of a seizure cluster (≥3 seizures/24 h; p >.05 between the study sites). Of the 209 seizures, 56% occurred during lights-on period and 44% during lights-off period (p > .05 between the study sites). SIGNIFICANCE: The PTE phenotype induced by lateral FPI is reproducible in a multicenter design. Our study supports the feasibility of performing preclinical multicenter trials in PTE to increase statistical power and experimental rigor to produce clinically translatable data to combat epileptogenesis after TBI.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Epilepsy , Animals , Male , Rats , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Disease Models, Animal , Epilepsy/etiology , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/pathology , Percussion , Phenotype , Rats, Sprague-Dawley , Reproducibility of Results , Seizures
12.
Epilepsy Res ; 199: 107263, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056191

ABSTRACT

OBJECTIVE: Project 1 of the Preclinical Multicenter Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) consortium aims to identify preclinical biomarkers for antiepileptogenic therapies following traumatic brain injury (TBI). The international participating centers in Finland, Australia, and the United States have made a concerted effort to ensure protocol harmonization. Here, we evaluate the success of harmonization process by assessing the timing, coverage, and performance between the study sites. METHOD: We collected data on animal housing conditions, lateral fluid-percussion injury model production, postoperative care, mortality, post-TBI physiological monitoring, timing of blood sampling and quality, MR imaging timing and protocols, and duration of video-electroencephalography (EEG) follow-up using common data elements. Learning effect in harmonization was assessed by comparing procedural accuracy between the early and late stages of the project. RESULTS: The animal housing conditions were comparable between the study sites but the postoperative care procedures varied. Impact pressure, duration of apnea, righting reflex, and acute mortality differed between the study sites (p < 0.001). The severity of TBI on D2 post TBI assessed using the composite neuroscore test was similar between the sites, but recovery of acute somato-motor deficits varied (p < 0.001). A total of 99% of rats included in the final cohort in UEF, 100% in Monash, and 79% in UCLA had blood samples taken at all time points. The timing of sampling differed on day (D)2 (p < 0.05) but not D9 (p > 0.05). Plasma quality was poor in 4% of the samples in UEF, 1% in Monash and 14% in UCLA. More than 97% of the final cohort were MR imaged at all timepoints in all study sites. The timing of imaging did not differ on D2 and D9 (p > 0.05), but varied at D30, 5 months, and ex vivo timepoints (p < 0.001). The percentage of rats that completed the monthly high-density video-EEG follow-up and the duration of video-EEG recording on the 7th post-injury month used for seizure detection for diagnosis of post-traumatic epilepsy differed between the sites (p < 0.001), yet the prevalence of PTE (UEF 21%, Monash 22%, UCLA 23%) was comparable between the sites (p > 0.05). A decrease in acute mortality and increase in plasma quality across time reflected a learning effect in the TBI production and blood sampling protocols. SIGNIFICANCE: Our study is the first demonstration of the feasibility of protocol harmonization for performing powered preclinical multi-center trials for biomarker and therapy discovery of post-traumatic epilepsy.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Epilepsy , Animals , Rats , Biomarkers , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Disease Models, Animal , Epilepsy/etiology , Epilepsy/diagnosis , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/drug therapy , Seizures , Multicenter Studies as Topic
13.
BMJ Open ; 13(10): e075888, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37890967

ABSTRACT

INTRODUCTION: Epilepsy is one of the most common neurological conditions worldwide. Despite many antiseizure medications (ASMs) being available, up to one-third of patients do not achieve seizure control. Preclinical studies have shown treatment with sodium selenate to have a disease-modifying effect in a rat model of chronic temporal lobe epilepsy (TLE). AIM: This randomised placebo-controlled trial aims to evaluate the antiseizure and disease-modifying effects of sodium selenate in people with drug-resistant TLE. METHODS: This will be a randomised placebo-controlled trial of sodium selenate. One hundred and twenty-four adults with drug-resistant TLE and ≥4 countable seizures/month will be recruited. Outcomes of interest will be measured at baseline, week 26 and week 52 and include an 8-week seizure diary, 24-hour electroencephalogram and cognitive, neuropsychiatric and quality of life measures. Participants will then be randomised to receive a sustained release formulation of sodium selenate (initially 10 mg three times a day, increasing to 15 mg three times a day at week 4 if tolerated) or a matching placebo for 26 weeks. OUTCOMES: The primary outcome will be a consumer codesigned epilepsy-Desirability of Outcome Rank (DOOR), combining change in seizure frequency, adverse events, quality of life and ASM burden measures into a single outcome measure, compared between treatment arms over the whole 52-week period. Secondary outcomes will compare baseline measures to week 26 (antiseizure) and week 52 (disease modification). Exploratory measures will include biomarkers of treatment response. ETHICS AND DISSEMINATION: The study has been approved by the lead site, Alfred Hospital Ethics Committee (594/20). Each participant will provide written informed consent prior to any trial procedures. The results of the study will be presented at national and international conferences, published in peer-reviewed journals and disseminated through consumer organisations. CONCLUSION: This study will be the first disease-modification randomised controlled trial in patients with drug-resistant TLE. TRIAL REGISTRATION NUMBER: ANZCTR; ACTRN12623000446662.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Adult , Humans , Animals , Rats , Selenic Acid , Epilepsy, Temporal Lobe/drug therapy , Quality of Life , Treatment Outcome , Drug Resistant Epilepsy/drug therapy , Seizures , Randomized Controlled Trials as Topic , Clinical Trials, Phase II as Topic
14.
Seizure ; 113: 1-5, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37847935

ABSTRACT

BACKGROUND: We investigated the value of automated enlarged perivascular spaces (ePVS) quantification to distinguish chronic traumatic brain injury (TBI) patients with post-traumatic epilepsy (PTE+) from chronic TBI patients without PTE (PTE-) in a feasibility study. METHODS: Patients with and without PTE were recruited and underwent an MRI post-TBI. Multimodal auto identification of ePVS algorithm was applied to T1-weighted MRIs to segment ePVS. The total number of ePVS was calculated and corrected for white matter volume, and an asymmetry index (AI) derived. RESULTS: PTE was diagnosed in 7 out of the 99 participants (male=69) after a median time of less than one year since injury (range 10-22). Brain lesions were observed in all 7 PTE+ cases (unilateral=4, 57%; bilateral=3, 43%) as compared to 40 PTE- cases (total 44%; unilateral=17, 42%; bilateral=23, 58%). There was a significant difference between PTE+ (M=1.21e-4, IQR [8.89e-5]) and PTE- cases (M=2.79e-4, IQR [6.25e-5]) in total corrected numbers of ePVS in patients with unilateral lesions (p=0.024). No differences in AI, trauma severity and lesion volume were seen between groups. CONCLUSION: This study has shown that automated quantification of ePVS is feasible and provided initial evidence that individuals with PTE with unilateral lesions may have fewer ePVS compared to TBI patients without epilepsy. Further studies with larger sample sizes should be conducted to determine the value of ePVS quantification as a PTE-biomarker.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Nervous System Malformations , White Matter , Humans , Male , Feasibility Studies , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Magnetic Resonance Imaging
15.
Neurology ; 101(20): e1992-e2004, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37788938

ABSTRACT

BACKGROUND AND OBJECTIVES: Blood biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) have recently been Food and Drug Administration approved as predictors of intracranial lesions on CT after mild traumatic brain injury (mTBI). However, most cases with mTBI are CT negative, and no biomarkers are approved to assist diagnosis in these individuals. In this study, we aimed to determine the optimal combination of blood biomarkers to assist mTBI diagnosis in otherwise healthy adults younger than 50 years presenting to an emergency department within 6 hours of injury. To further understand the utility of biomarkers, we assessed how biological sex, presence or absence of loss of consciousness and/or post-traumatic amnesia (LOC/PTA), and delayed presentation affected classification performance. METHODS: Blood samples, symptom questionnaires, and cognitive tests were prospectively conducted for participants with mTBI recruited from The Alfred Hospital Level 1 Emergency & Trauma Center and uninjured controls. Follow-up testing was conducted at 7 days. Simoa quantified plasma GFAP, UCH-L1, tau, neurofilament light chain (NfL), interleukin (IL)-6, and IL-1ß. Area under the receiver operating characteristic (AUC) analysis assessed classification accuracy for diagnosed mTBI, and logistic regression models identified optimal biomarker combinations. RESULTS: Plasma IL-6 (AUC 0.91, 95% CI 0.86-0.96), GFAP (AUC 0.85, 95% CI 0.78-0.93), and UCH-L1 (AUC 0.79, 95% CI 0.70-0.88) best differentiated mTBI (n = 74) from controls (n = 44) acutely (<6 hours), with NfL (AUC 0.81, 95% CI 0.72-0.90) the only marker to have such utility subacutely (7 days). Biomarker performance was similar between sexes and for participants with and without LOC/PTA, with the exception at 7 days, where GFAP and IL-6 retained some utility in female participants (GFAP: AUC 0.71, 95% CI 0.55-0.88; IL-6: AUC 0.71, 95% CI 0.55-0.87) and in those with LOC/PTA (GFAP: AUC 0.73, 95% CI 0.59-0.86; IL-6: AUC 0.71, 95% CI 0.57-0.84). Acute IL-6 (R 2 = 0.50, 95% CI 0.34-0.64) outperformed GFAP and UCH-L1 combined (R 2 = 0.35, 95% CI 0.17-0.50), with the best acute model featuring GFAP and IL-6 (R 2 = 0.54, 95% CI 0.34-0.68). DISCUSSION: These findings indicate that adding IL-6 to a panel of brain-specific proteins such as GFAP and UCH-L1 might assist in the acute diagnosis of mTBI in adults younger than 50 years. Multiple markers had high classification accuracy in participants without LOC/PTA. When compared with the best-performing acute markers, subacute measures of plasma NfL resulted in minimal reduction in classification accuracy. Future studies will investigate the optimal time frame over which plasma IL-6 might assist diagnostic decisions and how extracranial trauma affects utility.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Adult , Humans , Female , Brain Concussion/diagnostic imaging , Interleukin-6 , Brain , Biomarkers , Glial Fibrillary Acidic Protein , Ubiquitin Thiolesterase , Tomography, X-Ray Computed , Brain Injuries, Traumatic/diagnostic imaging
16.
Epilepsy Res ; 195: 107201, 2023 09.
Article in English | MEDLINE | ID: mdl-37562146

ABSTRACT

Preclinical MRI studies have been utilized for the discovery of biomarkers that predict post-traumatic epilepsy (PTE). However, these single site studies often lack statistical power due to limited and homogeneous datasets. Therefore, multisite studies, such as the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx), are developed to create large, heterogeneous datasets that can lead to more statistically significant results. EpiBioS4Rx collects preclinical data internationally across sites, including the United States, Finland, and Australia. However, in doing so, there are robust normalization and harmonization processes that are required to obtain statistically significant and generalizable results. This work describes the tools and procedures used to harmonize multisite, multimodal preclinical imaging data acquired by EpiBioS4Rx. There were four main harmonization processes that were utilized, including file format harmonization, naming convention harmonization, image coordinate system harmonization, and diffusion tensor imaging (DTI) metrics harmonization. By using Python tools and bash scripts, the file formats, file names, and image coordinate systems are harmonized across all the sites. To harmonize DTI metrics, values are estimated for each voxel in an image to generate a histogram representing the whole image. Then, the Quantitative Imaging Toolkit (QIT) modules are utilized to scale the mode to a value of one and depict the subsequent harmonized histogram. The standardization of file formats, naming conventions, coordinate systems, and DTI metrics are qualitatively assessed. The histograms of the DTI metrics were generated for all the individual rodents per site. For inter-site analysis, an average of the individual scans was calculated to create a histogram that represents each site. In order to ensure the analysis can be run at the level of individual animals, the sham and TBI cohort were analyzed separately, which depicted the same harmonization factor. The results demonstrate that these processes qualitatively standardize the file formats, naming conventions, coordinate systems, and DTI metrics of the data. This assists in the ability to share data across the study, as well as disseminate tools that can help other researchers to strengthen the statistical power of their studies and analyze data more cohesively.


Subject(s)
Epilepsy, Post-Traumatic , Epilepsy , Animals , Epilepsy, Post-Traumatic/drug therapy , Diffusion Tensor Imaging , Magnetic Resonance Imaging , Biomarkers , Brain/diagnostic imaging
17.
Epilepsia ; 64(10): 2806-2817, 2023 10.
Article in English | MEDLINE | ID: mdl-37539645

ABSTRACT

OBJECTIVE: More than one third of mesial temporal lobe epilepsy (MTLE) patients are resistant to current antiseizure medications (ASMs), and half experience mild-to-moderate adverse effects of ASMs. There is therefore a strong need to develop and test novel ASMs. The objective of this work is to evaluate the pharmacokinetics and neurological toxicity of E2730, a novel uncompetitive inhibitor of γ-aminobutyric acid transporter-1, and to test its seizure suppression effects in a rat model of chronic MTLE. METHODS: We first examined plasma levels and adverse neurological effects of E2730 in healthy Wistar rats. Adult male rats were implanted with osmotic pumps delivering either 10, 20, or 100 mg/kg/day of E2730 subcutaneously for 1 week. Blood sampling and behavioral assessments were performed at several timepoints. We next examined whether E2730 suppressed seizures in rats with chronic MTLE. These rats were exposed to kainic acid-induced status epilepticus, and 9 weeks later, when chronic epilepsy was established, were assigned to receive one of the three doses of E2730 or vehicle for 1 week in a randomized crossover design. Continuous video-electroencephalographic monitoring was acquired during the treatment period to evaluate epileptic seizures. RESULTS: Plasma levels following continuous infusion of E2730 showed a clear dose-related increase in concentration. The drug was well tolerated at all doses, and any sedation or neuromotor impairment was mild and transient, resolving within 48 h of treatment initiation. Remarkably, E2730 treatment in chronically epileptic rats led to seizure suppression in a dose-dependent manner, with 65% of rats becoming seizure-free at the highest dose tested. Mean seizure class did not differ between the treatment groups. SIGNIFICANCE: This study shows that continuous subcutaneous infusion of E2730 over 7 days results in a marked, dose-dependent suppression of spontaneous recurrent seizures, with minimal adverse neurological effects, in a rat model of chronic MTLE. E2730 shows strong promise as an effective new ASM to be translated into clinical trials.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Humans , Adult , Rats , Male , Animals , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy , Rats, Wistar , Seizures/drug therapy , Electroencephalography , gamma-Aminobutyric Acid , Disease Models, Animal , Hippocampus
18.
Front Mol Neurosci ; 16: 1208697, 2023.
Article in English | MEDLINE | ID: mdl-37456524

ABSTRACT

Introduction: Mild traumatic brain injuries (mTBIs) are the most common form of acquired brain injury. Symptoms of mTBI are thought to be associated with a neuropathological cascade, potentially involving the dysregulation of neurometabolites, lipids, and mitochondrial bioenergetics. Such alterations may play a role in the period of enhanced vulnerability that occurs after mTBI, such that a second mTBI will exacerbate neuropathology. However, it is unclear whether mTBI-induced alterations in neurometabolites and lipids that are involved in energy metabolism and other important cellular functions are exacerbated by repeat mTBI, and if such alterations are associated with mitochondrial dysfunction. Methods: In this experiment, using a well-established awake-closed head injury (ACHI) paradigm to model mTBI, male rats were subjected to a single injury, or five injuries delivered 1 day apart, and injuries were confirmed with a beam-walk task and a video observation protocol. Abundance of several neurometabolites was evaluated 24 h post-final injury in the ipsilateral and contralateral hippocampus using in vivo proton magnetic resonance spectroscopy (1H-MRS), and mitochondrial bioenergetics were evaluated 30 h post-final injury, or at 24 h in place of 1H-MRS, in the rostral half of the ipsilateral hippocampus. Lipidomic evaluations were conducted in the ipsilateral hippocampus and cortex. Results: We found that behavioral deficits in the beam task persisted 1- and 4 h after the final injury in rats that received repetitive mTBIs, and this was paralleled by an increase and decrease in hippocampal glutamine and glucose, respectively, whereas a single mTBI had no effect on sensorimotor and metabolic measurements. No group differences were observed in lipid levels and mitochondrial bioenergetics in the hippocampus, although some lipids were altered in the cortex after repeated mTBI. Discussion: The decrease in performance in sensorimotor tests and the presence of more neurometabolic and lipidomic abnormalities, after repeated but not singular mTBI, indicates that multiple concussions in short succession can have cumulative effects. Further preclinical research efforts are required to understand the underlying mechanisms that drive these alterations to establish biomarkers and inform treatment strategies to improve patient outcomes.

19.
J Clin Neurosci ; 115: 38-42, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37480731

ABSTRACT

The diagnosis of mild traumatic brain injury (mTBI) and early identification of patients who have persistent symptoms remains challenging. Symptoms are variably reported, and tests for cognitive impairment require specific expertise. The aim of this study was to assess the ability of plasma micro-ribonucleic acid (miRNA) biomarkers to distinguish between patients with mTBI and healthy controls. A secondary aim was to assess whether miRNA biomarker levels on the day of injury could predict persistent symptoms on day 7. Injured patients presented to an adult, tertiary referral hospital emergency department and were diagnosed with isolated mTBI (n = 75). Venous blood samples were collected within 6 h of injury. Symptom severity was assessed using the Rivermead Post-Concussion Symptom Questionnaire (RPQ) on the day of injury and at 7 days post-injury. The comparator group (n = 44) were healthy controls without any injury, who had bloods sampled and symptom severity assessed at the same time-point. Patients after mTBI reported higher symptom severity and had worse cognitive performance than the control group. Plasma miR423-3p levels were significantly higher among mTBI patients acutely post-injury compared to healthy controls and provided moderate discriminative ability (AUROC 0.67; 95 %CI: 0.57-0.77). None of the assessed miRNA biomarkers predicted persistent symptoms at 7 days. Plasma miR423-3p levels measured within 6 h of injury can discriminate for mTBI compared to healthy controls, with potential utility for screening after head injury or as an adjunct to the diagnosis of mTBI. Acute plasma miRNA levels did not predict patients who reported persistent symptoms at 7 days.


Subject(s)
Brain Concussion , Craniocerebral Trauma , MicroRNAs , Adult , Humans , Brain Concussion/diagnosis , Prospective Studies , Biomarkers
20.
Neuroscientist ; : 10738584231176233, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37212380

ABSTRACT

Chronic pain is highly prevalent and burdensome, affecting millions of people worldwide. Although it emerges at any point in life, it often manifests in adolescence. Given that adolescence is a unique developmental period, additional strains associated with persistent and often idiopathic pain lead to significant long-term consequences. While there is no singular cause for the chronification of pain, epigenetic modifications that lead to neural reorganization may underpin central sensitization and subsequent manifestation of pain hypersensitivity. Epigenetic processes are particularly active during the prenatal and early postnatal years. We demonstrate how exposure to various traumas, such as intimate partner violence while in utero or adverse childhood experiences, can significantly influence epigenetic regulation within the brain and in turn modify pain-related processes. We provide compelling evidence that the burden of chronic pain is likely initiated early in life, often being transmitted from mother to offspring. We also highlight two promising prophylactic strategies, oxytocin administration and probiotic use, that have the potential to attenuate the epigenetic consequences of early adversity. Overall, we advance understanding of the causal relationship between trauma and adolescent chronic pain by highlighting epigenetic mechanisms that underlie this transmission of risk, ultimately informing how to prevent this rising epidemic.

SELECTION OF CITATIONS
SEARCH DETAIL