Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Nat Protoc ; 19(6): 1750-1778, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38472495

ABSTRACT

We present Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that offers a holistic view of biological systems by integrating data from multiple cohorts and diverse omics types. TkNA helps to decipher key players and mechanisms governing host-microbiota (or any multi-omic data) interactions in specific conditions or diseases. TkNA reconstructs a network that represents a statistical model capturing the complex relationships between different omics in the biological system. It identifies robust and reproducible patterns of fold change direction and correlation sign across several cohorts to select differential features and their per-group correlations. The framework then uses causality-sensitive metrics, statistical thresholds and topological criteria to determine the final edges forming the transkingdom network. With the subsequent network's topological features, TkNA identifies nodes controlling a given subnetwork or governing communication between kingdoms and/or subnetworks. The computational time for the millions of correlations necessary for network reconstruction in TkNA typically takes only a few minutes, varying with the study design. Unlike most other multi-omics approaches that find only associations, TkNA focuses on establishing causality while accounting for the complex structure of multi-omic data. It achieves this without requiring huge sample sizes. Moreover, the TkNA protocol is user friendly, requiring minimal installation and basic familiarity with Unix. Researchers can access the TkNA software at https://github.com/CAnBioNet/TkNA/ .


Subject(s)
Microbiota , Humans , Host Microbial Interactions/physiology , Computational Biology/methods , Systems Biology/methods , Multiomics
2.
Nat Commun ; 15(1): 1597, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383607

ABSTRACT

IL-22 is critical for ameliorating obesity-induced metabolic disorders. However, it is unknown where IL-22 acts to mediate these outcomes. Here we examine the importance of tissue-specific IL-22RA1 signaling in mediating long-term high fat diet (HFD) driven metabolic disorders. To do so, we generated intestinal epithelium-, liver-, and white adipose tissue (WAT)-specific Il22ra1 knockout and littermate control mice. Intestinal epithelium- and liver-specific IL-22RA1 signaling upregulated systemic glucose metabolism. Intestinal IL-22RA1 signaling also mediated liver and WAT metabolism in a microbiota-dependent manner. We identified an association between Oscillibacter and elevated WAT inflammation, likely induced by Mmp12 expressing macrophages. Mechanistically, transcription of intestinal lipid metabolism genes is regulated by IL-22 and potentially IL-22-induced IL-18. Lastly, we show that Paneth cell-specific IL-22RA1 signaling, in part, mediates systemic glucose metabolism after HFD. Overall, these results elucidate a key role of intestinal epithelium-specific IL-22RA1 signaling in regulating intestinal metabolism and alleviating systemic obesity-associated disorders.


Subject(s)
Liver , Metabolic Diseases , Animals , Mice , Liver/metabolism , Inflammation/metabolism , Obesity/metabolism , Lipid Metabolism , Glucose/metabolism , Metabolic Diseases/metabolism , Lipids , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
3.
EMBO Mol Med ; 15(11): e18367, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37859621

ABSTRACT

Clinical and preclinical studies established that supplementing diets with ω3 polyunsaturated fatty acids (PUFA) can reduce hepatic dysfunction in nonalcoholic steatohepatitis (NASH) but molecular underpinnings of this action were elusive. Herein, we used multi-omic network analysis that unveiled critical molecular pathways involved in ω3 PUFA effects in a preclinical mouse model of western diet induced NASH. Since NASH is a precursor of liver cancer, we also performed meta-analysis of human liver cancer transcriptomes that uncovered betacellulin as a key EGFR-binding protein upregulated in liver cancer and downregulated by ω3 PUFAs in animals and humans with NASH. We then confirmed that betacellulin acts by promoting proliferation of quiescent hepatic stellate cells, inducing transforming growth factor-ß2 and increasing collagen production. When used in combination with TLR2/4 agonists, betacellulin upregulated integrins in macrophages thereby potentiating inflammation and fibrosis. Taken together, our results suggest that suppression of betacellulin is one of the key mechanisms associated with anti-inflammatory and anti-fibrotic effects of ω3 PUFA on NASH.


Subject(s)
Fatty Acids, Omega-3 , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Omega-3/metabolism , Diet, Western , Betacellulin/metabolism , Multiomics , Fibrosis , Liver Neoplasms/pathology , Liver/pathology , Disease Models, Animal , Mice, Inbred C57BL
4.
Front Nutr ; 10: 1147602, 2023.
Article in English | MEDLINE | ID: mdl-37609485

ABSTRACT

Background: Nonalcoholic fatty liver disease (NAFLD) is a global health problem. Identifying early gene indicators contributing to the onset and progression of NAFLD has the potential to develop novel targets for early therapeutic intervention. We report on the early and late transcriptomic signatures of western diet (WD)-induced nonalcoholic steatohepatitis (NASH) in female and male Ldlr-/- mice, with time-points at 1 week and 40 weeks on the WD. Control Ldlr-/- mice were maintained on a low-fat diet (LFD) for 1 and 40 weeks. Methods: The approach included quantitation of anthropometric and hepatic histology markers of disease as well as the hepatic transcriptome. Results: Only mice fed the WD for 40 weeks revealed evidence of NASH, i.e., hepatic steatosis and fibrosis. RNASeq transcriptome analysis, however, revealed multiple cell-specific changes in gene expression after 1 week that persisted to 40 weeks on the WD. These early markers of disease include induction of acute phase response (Saa1-2, Orm2), fibrosis (Col1A1, Col1A2, TGFß) and NASH associated macrophage (NAM, i.e., Trem2 high, Mmp12 low). We also noted the induction of transcripts associated with metabolic syndrome, including Mmp12, Trem2, Gpnmb, Lgals3 and Lpl. Finally, 1 week of WD feeding was sufficient to significantly induce TNFα, a cytokine involved in both hepatic and systemic inflammation. Conclusion: This study revealed early onset changes in the hepatic transcriptome that develop well before any anthropometric or histological evidence of NALFD or NASH and pointed to cell-specific targeting for the prevention of disease progression.

5.
bioRxiv ; 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36865280

ABSTRACT

Technological advances have generated tremendous amounts of high-throughput omics data. Integrating data from multiple cohorts and diverse omics types from new and previously published studies can offer a holistic view of a biological system and aid in deciphering its critical players and key mechanisms. In this protocol, we describe how to use Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that can perform meta-analysis of cohorts and detect master regulators among measured parameters that govern pathological or physiological responses of host-microbiota (or any multi-omic data) interactions in a particular condition or disease. TkNA first reconstructs the network that represents a statistical model capturing the complex relationships between the different omics of the biological system. Here, it selects differential features and their per-group correlations by identifying robust and reproducible patterns of fold change direction and sign of correlation across several cohorts. Next, a causality-sensitive metric, statistical thresholds, and a set of topological criteria are used to select the final edges that form the transkingdom network. The second part of the analysis involves interrogating the network. Using the network's local and global topology metrics, it detects nodes that are responsible for control of given subnetwork or control of communication between kingdoms and/or subnetworks. The underlying basis of the TkNA approach involves fundamental principles including laws of causality, graph theory and information theory. Hence, TkNA can be used for causal inference via network analysis of any host and/or microbiota multi-omics data. This quick and easy-to-run protocol requires very basic familiarity with the Unix command-line environment.

6.
Immunity ; 56(1): 43-57.e10, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36630917

ABSTRACT

There is growing recognition that regionalization of bacterial colonization and immunity along the intestinal tract has an important role in health and disease. Yet, the mechanisms underlying intestinal regionalization and its dysregulation in disease are not well understood. This study found that regional epithelial expression of the transcription factor GATA4 controls bacterial colonization and inflammatory tissue immunity in the proximal small intestine by regulating retinol metabolism and luminal IgA. Furthermore, in mice without jejunal GATA4 expression, the commensal segmented filamentous bacteria promoted pathogenic inflammatory immune responses that disrupted barrier function and increased mortality upon Citrobacter rodentium infection. In celiac disease patients, low GATA4 expression was associated with metabolic alterations, mucosal Actinobacillus, and increased IL-17 immunity. Taken together, these results reveal broad impacts of GATA4-regulated intestinal regionalization on bacterial colonization and tissue immunity, highlighting an elaborate interdependence of intestinal metabolism, immunity, and microbiota in homeostasis and disease.


Subject(s)
Enterobacteriaceae Infections , GATA4 Transcription Factor , Gastrointestinal Microbiome , Intestinal Mucosa , Animals , Humans , Mice , Actinobacillus , Gastrointestinal Microbiome/immunology , GATA4 Transcription Factor/metabolism , Immunity, Mucosal , Interleukin-17/immunology , Interleukin-17/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestine, Small , Symbiosis
7.
Elife ; 112022 Oct 20.
Article in English | MEDLINE | ID: mdl-36264059

ABSTRACT

Trained immunity is an innate immune memory response that is induced by a primary inflammatory stimulus that sensitizes monocytes and macrophages to a secondary pathogenic challenge, reprogramming the host response to infection and inflammatory disease. Dietary fatty acids can act as inflammatory stimuli, but it is unknown if they can act as the primary stimuli to induce trained immunity. Here we find mice fed a diet enriched exclusively in saturated fatty acids (ketogenic diet; KD) confer a hyper-inflammatory response to systemic lipopolysaccharide (LPS) and increased mortality, independent of diet-induced microbiome and hyperglycemia. We find KD alters the composition of the hematopoietic stem cell compartment and enhances the response of bone marrow macrophages, monocytes, and splenocytes to secondary LPS challenge. Lipidomics identified enhanced free palmitic acid (PA) and PA-associated lipids in KD-fed mice serum. We found pre-treatment with physiologically relevant concentrations of PA induces a hyper-inflammatory response to LPS in macrophages, and this was dependent on the synthesis of ceramide. In vivo, we found systemic PA confers enhanced inflammation and mortality in response to systemic LPS, and this phenotype was not reversible for up to 7 days post-PA-exposure. Conversely, we find PA exposure enhanced clearance of Candida albicans in Rag1-/- mice. Lastly, we show that oleic acid, which depletes intracellular ceramide, reverses PA-induced hyper-inflammation in macrophages and enhanced mortality in response to LPS. These implicate enriched dietary SFAs, and specifically PA, in the induction of long-lived innate immune memory and highlight the plasticity of this innate immune reprogramming by dietary constituents.


Subject(s)
Endotoxemia , Fatty Acids , Animals , Mice , Fatty Acids/pharmacology , Ceramides , Lipopolysaccharides/pharmacology , Palmitic Acid/pharmacology , Inflammation , Diet , Immunity, Innate
8.
J Exp Med ; 219(7)2022 07 04.
Article in English | MEDLINE | ID: mdl-35657352

ABSTRACT

Microbiota contribute to the induction of type 2 diabetes by high-fat/high-sugar (HFHS) diet, but which organs/pathways are impacted by microbiota remain unknown. Using multiorgan network and transkingdom analyses, we found that microbiota-dependent impairment of OXPHOS/mitochondria in white adipose tissue (WAT) plays a primary role in regulating systemic glucose metabolism. The follow-up analysis established that Mmp12+ macrophages link microbiota-dependent inflammation and OXPHOS damage in WAT. Moreover, the molecular signature of Mmp12+ macrophages in WAT was associated with insulin resistance in obese patients. Next, we tested the functional effects of MMP12 and found that Mmp12 genetic deficiency or MMP12 inhibition improved glucose metabolism in conventional, but not in germ-free mice. MMP12 treatment induced insulin resistance in adipocytes. TLR2-ligands present in Oscillibacter valericigenes bacteria, which are expanded by HFHS, induce Mmp12 in WAT macrophages in a MYD88-ATF3-dependent manner. Thus, HFHS induces Mmp12+ macrophages and MMP12, representing a microbiota-dependent bridge between inflammation and mitochondrial damage in WAT and causing insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Microbiota , Adipocytes/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Glucose/metabolism , Humans , Inflammation/metabolism , Insulin , Insulin Resistance/physiology , Macrophages/metabolism , Matrix Metalloproteinase 12/metabolism , Mice
9.
Front Behav Neurosci ; 16: 791128, 2022.
Article in English | MEDLINE | ID: mdl-35210996

ABSTRACT

The gut microbiome and the gut brain axis are potential determinants of Alzheimer's disease (AD) etiology or severity and gut microbiota might coordinate with the gut-brain axis to regulate behavioral phenotypes in AD mouse models. Using 6-month-old human amyloid precursor protein (hAPP) knock-in (KI) mice, which contain the Swedish and Iberian mutations [APP NL-F (App NL-F)] or the Arctic mutation as third mutation [APP NL-G-F (App NL-G-F)], behavioral and cognitive performance is associated with the gut microbiome and APP genotype modulates this association. In this study, we determined the feasibility of behavioral testing of mice in a biosafety cabinet and whether stool from 6-month-old App NL-G-F mice or App NL-G-F crossed with human apoE4 targeted replacement mice is sufficient to induce behavioral phenotypes in 4-5 month-old germ-free C57BL/6J mice 4 weeks following inoculation. We also compared the behavioral phenotypes of the recipient mice with that of the donor mice. Finally, we assessed cortical Aß levels and analyzed the gut microbiome in the recipient mice. These results show that it is feasible to behaviorally test germ-free mice inside a biosafety cabinet. However, the host genotype was critical in modulating the pattern of induced behavioral phenotypes as compared to those seen in the genotype- and sex-match donor mice. Male mice that received stool from App NL-G-F and App NL-G-F/E4 donor genotypes tended to have lower body weight as compared to wild type, an effect not observed among donor mice. Additionally, App NL-G-F/E4 recipient males, but not females, showed impaired object recognition. Insoluble Aß40 levels were detected in App NL-G-F and App NL-G-F/E4 recipient mice. Recipients of App NL-G-F, but not App NL-G-F/E4, donor mice carried cortical insoluble Aß40 levels that positively correlated with activity levels on the first and second day of open field testing. For recipient mice, the interaction between donor genotype and several behavioral scores predicted gut microbiome alpha-diversity. Similarly, two behavioral performance scores predicted microbiome composition in recipient mice, but this association was dependent on the donor genotype. These data suggest that genotypes of the donor and recipient might need to be considered for developing novel therapeutic strategies targeting the gut microbiome in AD and other neurodegenerative disorders.

10.
Mol Nutr Food Res ; 65(21): e2100389, 2021 11.
Article in English | MEDLINE | ID: mdl-34496124

ABSTRACT

SCOPE: The polyphenol xanthohumol (XN) improves dysfunctional glucose and lipid metabolism in diet-induced obesity animal models. Because XN changes intestinal microbiota composition, the study hypothesizes that XN requires the microbiota to mediate its benefits. METHODS AND RESULTS: To test the hypothesis, the study feeds conventional and germ-free male Swiss Webster mice either a low-fat diet (LFD, 10% fat derived calories), a high-fat diet (HFD, 60% fat derived calories), or a high-fat diet supplemented with XN at 60 mg kg-1 body weight per day (HXN) for 10 weeks, and measure parameters of glucose and lipid metabolism. In conventional mice, the study discovers XN supplementation decreases plasma insulin concentrations and improves Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). In germ-free mice, XN supplementation fails to improve these outcomes. Fecal sample 16S rRNA gene sequencing analysis suggests XN supplementation changes microbial composition and dramatically alters the predicted functional capacity of the intestinal microbiota. Furthermore, the intestinal microbiota metabolizes XN into bioactive compounds, including dihydroxanthohumol (DXN), an anti-obesogenic compound with improved bioavailability. CONCLUSION: XN requires the intestinal microbiota to mediate its benefits, which involves complex diet-host-microbiota interactions with changes in both microbial composition and functional capacity. The study results warrant future metagenomic studies which will provide insight into complex microbe-microbe interactions and diet-host-microbiota interactions.


Subject(s)
Gastrointestinal Microbiome , Animals , Diet, High-Fat/adverse effects , Flavonoids , Gastrointestinal Microbiome/genetics , Glucose , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Propiophenones , RNA, Ribosomal, 16S
11.
Nat Commun ; 12(1): 101, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397942

ABSTRACT

Western diet (WD) is one of the major culprits of metabolic disease including type 2 diabetes (T2D) with gut microbiota playing an important role in modulating effects of the diet. Herein, we use a data-driven approach (Transkingdom Network analysis) to model host-microbiome interactions under WD to infer which members of microbiota contribute to the altered host metabolism. Interrogation of this network pointed to taxa with potential beneficial or harmful effects on host's metabolism. We then validate the functional role of the predicted bacteria in regulating metabolism and show that they act via different host pathways. Our gene expression and electron microscopy studies show that two species from Lactobacillus genus act upon mitochondria in the liver leading to the improvement of lipid metabolism. Metabolomics analyses revealed that reduced glutathione may mediate these effects. Our study identifies potential probiotic strains for T2D and provides important insights into mechanisms of their action.


Subject(s)
Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/microbiology , Diet, Western , Lactobacillus/metabolism , Mitochondria, Liver/metabolism , Animals , Bilirubin/blood , Diabetes Mellitus, Type 2/genetics , Gastrointestinal Microbiome , Gene Expression Regulation , Glucose/metabolism , Glutathione/blood , Glutathione/metabolism , Humans , Lipid Metabolism , Male , Metabolomics , Mice, Inbred C57BL , Mitochondria, Liver/ultrastructure , Reproducibility of Results , Transcriptome/genetics
12.
Microorganisms ; 8(4)2020 Apr 05.
Article in English | MEDLINE | ID: mdl-32260528

ABSTRACT

A calorie-dense diet is a well-established risk factor for obesity and metabolic syndrome (MetS), whereas the role of the intestinal microbiota (IMB) in the development of diet-induced obesity (DIO) is not completely understood. To test the hypothesis that Swiss Webster (Tac:SW) mice can develop characteristics of DIO and MetS in the absence of the IMB, we fed conventional (CV) and germ-free (GF) male Tac:SW mice either a low-fat diet (LFD; 10% fat derived calories) or a high-fat diet (HFD; 60% fat derived calories) for 10 weeks. The HFD increased feed conversion and body weight in GF mice independent of the increase associated with the microbiota in CV mice. In contrast to CV mice, GF mice did not decrease feed intake on the HFD and possessed heavier fat pads. The HFD caused hyperglycemia, hyperinsulinemia, and impaired glucose absorption in GF mice independent of the increase associated with the microbiota in CV mice. A HFD also elevated plasma LDL-cholesterol and increased hepatic triacylglycerol, free fatty acids, and ceramides in all mice, whereas hypertriglyceridemia and increased hepatic medium and long-chain acylcarnitines were only observed in CV mice. Therefore, GF male Tac:SW mice developed several detrimental effects of obesity and MetS from a high-fat, calorie dense diet.

13.
Sci Immunol ; 5(46)2020 04 10.
Article in English | MEDLINE | ID: mdl-32276965

ABSTRACT

Intestinal mononuclear phagocytes (MPs) are composed of heterogeneous dendritic cell (DC) and macrophage subsets necessary for the initiation of immune response and control of inflammation. Although MPs in the normal intestine have been extensively studied, the heterogeneity and function of inflammatory MPs remain poorly defined. We performed phenotypical, transcriptional, and functional analyses of inflammatory MPs in infectious Salmonella colitis and identified CX3CR1+ MPs as the most prevalent inflammatory cell type. CX3CR1+ MPs were further divided into three distinct populations, namely, Nos2 +CX3CR1lo, Ccr7 +CX3CR1int (lymph migratory), and Cxcl13 +CX3CR1hi (mucosa resident), all of which were transcriptionally aligned with macrophages and derived from monocytes. In follow-up experiments in vivo, intestinal CX3CR1+ macrophages were superior to conventional DC1 (cDC1) and cDC2 in inducing Salmonella-specific mucosal IgA. We next examined spatial organization of the immune response induced by CX3CR1+ macrophage subsets and identified mucosa-resident Cxcl13 +CX3CR1hi macrophages as the antigen-presenting cells responsible for recruitment and activation of CD4+ T and B cells to the sites of Salmonella invasion, followed by tertiary lymphoid structure formation and the local pathogen-specific IgA response. Using mice we developed with a floxed Ccr7 allele, we showed that this local IgA response developed independently of migration of the Ccr7 +CX3CR1int population to the mesenteric lymph nodes and contributed to the total mucosal IgA response to infection. The differential activity of intestinal macrophage subsets in promoting mucosal IgA responses should be considered in the development of vaccines to prevent Salmonella infection and in the design of anti-inflammatory therapies aimed at modulating macrophage function in inflammatory bowel disease.


Subject(s)
CX3C Chemokine Receptor 1/immunology , Immunoglobulin A/immunology , Intestinal Mucosa/immunology , Macrophages/immunology , Tertiary Lymphoid Structures/immunology , Animals , Female , Gastrointestinal Microbiome/immunology , Inflammation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Salmonella enterica/immunology , Streptomycin
14.
EBioMedicine ; 51: 102590, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31901868

ABSTRACT

A substantial body of literature has provided evidence for the role of gut microbiota in metabolic diseases including type 2 diabetes. However, reports vary regarding the association of particular taxonomic groups with disease. In this systematic review, we focused on the potential role of different bacterial taxa affecting diabetes. We have summarized evidence from 42 human studies reporting microbial associations with disease, and have identified supporting preclinical studies or clinical trials using treatments with probiotics. Among the commonly reported findings, the genera of Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia and Roseburia were negatively associated with T2D, while the genera of Ruminococcus, Fusobacterium, and Blautia were positively associated with T2D. We also discussed potential molecular mechanisms of microbiota effects in the onset and progression of T2D.


Subject(s)
Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/physiopathology , Gastrointestinal Microbiome , Bacteria/metabolism , Diabetes Mellitus, Type 2/drug therapy , Humans
15.
Front Immunol ; 11: 606441, 2020.
Article in English | MEDLINE | ID: mdl-33552063

ABSTRACT

The diet represents one environmental risk factor controlling the progression of type 1 diabetes (T1D) in genetically susceptible individuals. Consequently, understanding which specific nutritional components promote or prevent the development of disease could be used to make dietary recommendations in prediabetic individuals. In the current study, we hypothesized that the immunoregulatory phytochemcial, indole-3-carbinol (I3C) which is found in cruciferous vegetables, will regulate the progression of T1D in nonobese diabetic (NOD) mice. During digestion, I3C is metabolized into ligands for the aryl hydrocarbon receptor (AhR), a transcription factor that when systemically activated prevents T1D. In NOD mice, an I3C-supplemented diet led to strong AhR activation in the small intestine but minimal systemic AhR activity. In the absence of this systemic response, the dietary intervention led to exacerbated insulitis. Consistent with the compartmentalization of AhR activation, dietary I3C did not alter T helper cell differentiation in the spleen or pancreatic draining lymph nodes. Instead, dietary I3C increased the percentage of CD4+RORγt+Foxp3- (Th17 cells) in the lamina propria, intraepithelial layer, and Peyer's patches of the small intestine. The immune modulation in the gut was accompanied by alterations to the intestinal microbiome, with changes in bacterial communities observed within one week of I3C supplementation. A transkingdom network was generated to predict host-microbe interactions that were influenced by dietary I3C. Within the phylum Firmicutes, several genera (Intestinimonas, Ruminiclostridium 9, and unclassified Lachnospiraceae) were negatively regulated by I3C. Using AhR knockout mice, we validated that Intestinimonas is negatively regulated by AhR. I3C-mediated microbial dysbiosis was linked to increases in CD25high Th17 cells. Collectively, these data demonstrate that site of AhR activation and subsequent interactions with the host microbiome are important considerations in developing AhR-targeted interventions for T1D.


Subject(s)
Bacteria/drug effects , Basic Helix-Loop-Helix Transcription Factors/agonists , Diabetes Mellitus, Type 1/chemically induced , Gastrointestinal Microbiome/drug effects , Indoles/toxicity , Intestine, Small/drug effects , Receptors, Aryl Hydrocarbon/agonists , Th17 Cells/drug effects , Animals , Bacteria/immunology , Bacteria/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/microbiology , Dietary Exposure , Disease Models, Animal , Disease Progression , Dysbiosis , Host-Pathogen Interactions , Intestine, Small/immunology , Intestine, Small/metabolism , Intestine, Small/microbiology , Mice, Inbred NOD , Mice, Knockout , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
16.
Mol Nutr Food Res ; 64(1): e1900789, 2020 01.
Article in English | MEDLINE | ID: mdl-31755244

ABSTRACT

SCOPE: Two hydrogenated xanthohumol (XN) derivatives, α,ß-dihydro-XN (DXN) and tetrahydro-XN (TXN), improved parameters of metabolic syndrome (MetS), a critical risk factor of cardiovascular disease (CVD) and type 2 diabetes, in a diet-induced obese murine model. It is hypothesized that improvements in obesity and MetS are linked to changes in composition of the gut microbiota, bile acid metabolism, intestinal barrier function, and inflammation. METHODS AND RESULTS: To test this hypothesis, 16S rRNA genes were sequenced and bile acids were measured in fecal samples from C57BL/6J mice fed a high-fat diet (HFD) or HFD containing XN, DXN or TXN. Expression of genes associated with epithelial barrier function, inflammation, and bile acid metabolism were measured in the colon, white adipose tissue (WAT), and liver, respectively. Administration of XN derivatives decreases intestinal microbiota diversity and abundance-specifically Bacteroidetes and Tenericutes-alters bile acid metabolism, and reduces inflammation. In WAT, TXN supplementation decreases pro-inflammatory gene expression by suppressing macrophage infiltration. Transkingdom network analysis connects changes in the microbiota to improvements in MetS in the host. CONCLUSION: Changes in the gut microbiota and bile acid metabolism may explain, in part, the improvements in obesity and MetS associated with administration of XN and its derivatives.


Subject(s)
Bile Acids and Salts/metabolism , Flavonoids/pharmacology , Gastrointestinal Microbiome/drug effects , Metabolic Syndrome/drug therapy , Propiophenones/pharmacology , Adipose Tissue, White/drug effects , Animals , Bile Acids and Salts/genetics , Diet, High-Fat/adverse effects , Feces/chemistry , Feces/microbiology , Gastrointestinal Microbiome/genetics , Gene Expression Regulation/drug effects , Male , Metabolic Syndrome/metabolism , Metabolic Syndrome/microbiology , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/etiology , Panniculitis/drug therapy , Panniculitis/etiology , RNA, Ribosomal, 16S
17.
J Vet Diagn Invest ; 31(2): 155-163, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30741115

ABSTRACT

Knowledge of changes in the composition of microbial communities (microbiota) in tissues after death, over time, is critical to correctly interpret results of microbiologic testing from postmortem examinations. Limited information is available about postmortem changes of the microbiota and the associated microbial genes (microbiome) of internal organs in any species. We examined the effect of time and ambient temperature on the postmortem microbiome (thanatomicrobiome) of tissues typically sampled for microbiologic testing during autopsies. Twenty rabbits were euthanized and their bodies stored at 4°C or 20°C for 6 or 48 h. Ileum, cecum, kidney, and lung tissue were sampled. Bacterial DNA abundance was determined by RT-qPCR. Microbiome diversity was determined by 16S rRNA gene sequencing. By relative abundance of the microbiome composition, intestinal tissues were clearly separated from lungs and kidneys, which were similar to each other, over all times and temperatures. Only cecal thanatomicrobiomes had consistently high concentrations and consistent composition in all conditions. In lungs and kidneys, but not intestine, proteobacteria were highly abundant at specific times and temperatures. Thanatomicrobiome variation was not explained by minor subclinical lesions identified upon microscopic examination of tissues. Bacterial communities typically found in the intestine were not identified at extra-intestinal sites in the first 48 h at 4°C and only in small amounts at 20°C. However, changes in tissue-specific microbiomes during the postmortem interval should be considered when interpreting results of microbiologic testing.


Subject(s)
Bacteria/classification , Cecum/microbiology , Ileum/microbiology , Microbiota/physiology , Rabbits/microbiology , Temperature , Animals , Bacteria/genetics , DNA, Bacterial/genetics , Death , Kidney/microbiology , RNA, Ribosomal, 16S , Real-Time Polymerase Chain Reaction
18.
Sci Transl Med ; 10(467)2018 11 14.
Article in English | MEDLINE | ID: mdl-30429354

ABSTRACT

Aging in humans is associated with increased hyperglycemia and insulin resistance (collectively termed IR) and dysregulation of the immune system. However, the causative factors underlying their association remain unknown. Here, using "healthy" aged mice and macaques, we found that IR was induced by activated innate 4-1BBL+ B1a cells. These cells (also known as 4BL cells) accumulated in aging in response to changes in gut commensals and a decrease in beneficial metabolites such as butyrate. We found evidence suggesting that loss of the commensal bacterium Akkermansia muciniphila impaired intestinal integrity, causing leakage of bacterial products such as endotoxin, which activated CCR2+ monocytes when butyrate was decreased. Upon infiltration into the omentum, CCR2+ monocytes converted B1a cells into 4BL cells, which, in turn, induced IR by expressing 4-1BBL, presumably to trigger 4-1BB receptor signaling as in obesity-induced metabolic disorders. This pathway and IR were reversible, as supplementation with either A. muciniphila or the antibiotic enrofloxacin, which increased the abundance of A. muciniphila, restored normal insulin response in aged mice and macaques. In addition, treatment with butyrate or antibodies that depleted CCR2+ monocytes or 4BL cells had the same effect on IR. These results underscore the pathological function of B1a cells and suggest that the microbiome-monocyte-B cell axis could potentially be targeted to reverse age-associated IR.


Subject(s)
Aging/immunology , Bacteria/immunology , Immunity, Innate , Insulin Resistance , Animals , Bacteria/drug effects , Butyrates/pharmacology , Cell Line , Dysbiosis/microbiology , Enrofloxacin/pharmacology , Female , Gastrointestinal Microbiome/drug effects , Immunity, Innate/drug effects , Macaca , Mice, Inbred C57BL , Monocytes/drug effects , Monocytes/metabolism , Omentum/metabolism , Receptors, CCR2/metabolism
19.
PeerJ ; 6: e5590, 2018.
Article in English | MEDLINE | ID: mdl-30294508

ABSTRACT

Cervical cancer is the fourth most common cancer in women worldwide with human papillomavirus (HPV) being the main cause the disease. Chromosomal amplifications have been identified as a source of upregulation for cervical cancer driver genes but cannot fully explain increased expression of immune genes in invasive carcinoma. Insight into additional factors that may tip the balance from immune tolerance of HPV to the elimination of the virus may lead to better diagnosis markers. We investigated whether microbiota affect molecular pathways in cervical carcinogenesis by performing microbiome analysis via sequencing 16S rRNA in tumor biopsies from 121 patients. While we detected a large number of intra-tumor taxa (289 operational taxonomic units (OTUs)), we focused on the 38 most abundantly represented microbes. To search for microbes and host genes potentially involved in the interaction, we reconstructed a transkingdom network by integrating a previously discovered cervical cancer gene expression network with our bacterial co-abundance network and employed bipartite betweenness centrality. The top ranked microbes were represented by the families Bacillaceae, Halobacteriaceae, and Prevotellaceae. While we could not define the first two families to the species level, Prevotellaceae was assigned to Prevotella bivia. By co-culturing a cervical cancer cell line with P. bivia, we confirmed that three out of the ten top predicted genes in the transkingdom network (lysosomal associated membrane protein 3 (LAMP3), STAT1, TAP1), all regulators of immunological pathways, were upregulated by this microorganism. Therefore, we propose that intra-tumor microbiota may contribute to cervical carcinogenesis through the induction of immune response drivers, including the well-known cancer gene LAMP3.

20.
Methods Mol Biol ; 1849: 227-242, 2018.
Article in English | MEDLINE | ID: mdl-30298258

ABSTRACT

Improvements in sequencing technologies and reduced experimental costs have resulted in a vast number of studies generating high-throughput data. Although the number of methods to analyze these "omics" data has also increased, computational complexity and lack of documentation hinder researchers from analyzing their high-throughput data to its true potential. In this chapter we detail our data-driven, transkingdom network (TransNet) analysis protocol to integrate and interrogate multi-omics data. This systems biology approach has allowed us to successfully identify important causal relationships between different taxonomic kingdoms (e.g., mammals and microbes) using diverse types of data.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks , Host Microbial Interactions , Microbiota , Systems Biology/methods , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL