Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2639: 301-337, 2023.
Article in English | MEDLINE | ID: mdl-37166724

ABSTRACT

Watson-Crick base-pairing of DNA allows the nanoscale fabrication of biocompatible synthetic nanostructures for diagnostic and therapeutic biomedical purposes. DNA nanostructure design elicits exquisite control of shape and conformation compared to other nanoparticles. Furthermore, nucleic acid aptamers can be coupled to DNA nanostructures to allow interaction and response to a plethora of biomolecules beyond nucleic acids. When compared to the better-known approach of using protein antibodies for molecular recognition, nucleic acid aptamers are bespoke with the underlying DNA nanostructure backbone and have various other stability, synthesis, and cost advantages. Here, we provide detailed methodologies to synthesize and characterize aptamer-enabled DNA nanostructures. The methods described can be generally applied to various designs of aptamer-enabled DNA nanostructures with a wide range of applications both within and beyond biomedical nanotechnology.


Subject(s)
Aptamers, Nucleotide , Nanostructures , Nucleic Acids , Aptamers, Nucleotide/chemistry , Nanostructures/chemistry , DNA/chemistry , Nanotechnology/methods , Nucleic Acids/chemistry , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL