Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38139065

ABSTRACT

Dinitrosyl iron complexes (DNICs) are important physiological derivatives of nitric oxide. These complexes have a wide range of biological activities, with antioxidant and antiradical ones being of particular interest and importance. We studied the interaction between DNICs associated with the dipeptide L-carnosine or serum albumin and prooxidants under conditions mimicking oxidative stress. The ligands of these DNICs were histidine residues of carnosine or His39 and Cys34 in bovine serum albumin. Carnosine-bound DNICs reduced the level of piperazine free radicals in the reaction system containing tert-butyl hydroperoxide (t-BOOH), bivalent iron ions, a nitroxyl anion donor (Angeli's salt), and HEPES buffer. The ability of carnosine DNICs to intercept organic free radicals produced from t-BOOH decay could lead to this effect. In addition, carnosine DNICs reacted with the superoxide anion radical (O2•-) formed in the xanthine/xanthine oxidase enzymatic system. They also reduced the oxoferryl form of the heme group formed in the reaction of myoglobin with t-BOOH. DNICs associated with serum albumin were found to be rapidly destroyed in a model system containing metmyoglobin and t-BOOH. At the same time, these protein DNICs inhibited the t-BOOH-induced oxidative degradation of coenzymes Q9 and Q10 in rat myocardial homogenate. The possible mechanisms of the antioxidant and antiradical action of the DNICs studied and their role in the metabolism of reactive oxygen and nitrogen species are discussed.


Subject(s)
Antioxidants , Carnosine , Rats , Animals , Antioxidants/pharmacology , Histidine , Carnosine/pharmacology , Nitrogen Oxides/chemistry , Iron/metabolism , Nitric Oxide/metabolism , Free Radicals , Superoxides/metabolism , Oxygen , Serum Albumin
2.
Int J Mol Sci ; 24(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36613614

ABSTRACT

Carbonyl stress occurs when reactive carbonyl compounds (RCC), such as reducing sugars, dicarbonyls etc., accumulate in the organism. The interaction of RCC carbonyl groups with amino groups of molecules is called the Maillard reaction. One of the most active RCCs is α-dicarbonyl methylglyoxal (MG) that modifies biomolecules forming non-enzymatic glycation products. Organic free radicals are formed in the reaction between MG and lysine or Nα-acetyllysine. S-nitrosothiols and nitric oxide (•NO) donor PAPA NONOate increased the yield of organic free radical intermediates, while other •NO-derived metabolites, namely, nitroxyl anion and dinitrosyl iron complexes (DNICs) decreased it. At the late stages of the Maillard reaction, S-nitrosoglutathione (GSNO) also inhibited the formation of glycation end products (AGEs). The formation of a new type of DNICs, bound with Maillard reaction products, was found. The results obtained were used to explain the glycation features of legume hemoglobin-leghemoglobin (Lb), which is a lysine-rich protein. In Lb, lysine residues can form fluorescent cross-linked AGEs, and •NO-derived metabolites slow down their formation. The knowledge of these processes can be used to increase the stability of Lb. It can help in better understanding the impact of stress factors on legume plants and contribute to the production of recombinant Lb for biotechnology.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Lysine/metabolism , Pyruvaldehyde/chemistry , Nitric Oxide/metabolism , Leghemoglobin , Free Radicals/metabolism , Maillard Reaction , Hemoglobins/chemistry , Glycation End Products, Advanced/metabolism
3.
Int J Mol Sci ; 22(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34948445

ABSTRACT

Dinitrosyl iron complexes (DNICs) are a physiological form of nitric oxide (•NO) in an organism. They are able not only to deposit and transport •NO, but are also to act as antioxidant and antiradical agents. However, the mechanics of hemoglobin-bound DNICs (Hb-DNICs) protecting Hb against peroxynitrite-caused, mediated oxidative modification have not yet been scrutinized. Through EPR spectroscopy we show that Hb-DNICs are destroyed under the peroxynitrite action in a dose-dependent manner. At the same time, DNICs inhibit the oxidation of tryptophan and tyrosine residues and formation of carbonyl derivatives. They also prevent the formation of covalent crosslinks between Hb subunits and degradation of a heme group. These effects can arise from the oxoferryl heme form being reduced, and they can be connected with the ability of DNICs to directly intercept peroxynitrite and free radicals, which emerge due to its homolysis. These data show that DNICs may ensure protection from myocardial ischemia.


Subject(s)
Iron/chemistry , Methemoglobin/metabolism , Nitrogen Oxides/chemistry , Peroxynitrous Acid/adverse effects , Animals , Cattle , Electron Spin Resonance Spectroscopy , Humans , Methemoglobin/chemistry , Oxidation-Reduction , Tryptophan/chemistry , Tyrosine/chemistry
4.
Molecules ; 26(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34885789

ABSTRACT

Leghemoglobin (Lb) is an oxygen-binding plant hemoglobin of legume nodules, which participates in the symbiotic nitrogen fixation process. Another way to obtain Lb is its expression in bacteria, yeasts, or other organisms. This is promising for both obtaining Lb in the necessary quantity and scrutinizing it in model systems, e.g., its interaction with reactive oxygen (ROS) and nitrogen (RNS) species. The main goal of the work was to study how Lb expression affected the ability of Escherichia coli cells to tolerate oxidative and nitrosative stress. The bacterium E. coli with the embedded gene of soybean leghemoglobin a contains this protein in an active oxygenated state. The interaction of the expressed Lb with oxidative and nitrosative stress inducers (nitrosoglutathione, tert-butyl hydroperoxide, and benzylviologen) was studied by enzymatic methods and spectrophotometry. Lb formed NO complexes with heme-nitrosylLb or nonheme iron-dinitrosyl iron complexes (DNICs). The formation of Lb-bound DNICs was also detected by low-temperature electron paramagnetic resonance spectroscopy. Lb displayed peroxidase activity and catalyzed the reduction of organic peroxides. Despite this, E. coli-synthesized Lb were more sensitive to stress inducers. This might be due to the energy demand required by the Lb synthesis, as an alien protein consumes bacterial resources and thereby decreases adaptive potential of E. coli.


Subject(s)
Escherichia coli/metabolism , Glycine max/metabolism , Leghemoglobin/metabolism , Oxidative Stress , Plant Proteins/metabolism , Escherichia coli/genetics , Gene Expression , Genes, Plant , Hydrogen Peroxide/metabolism , Leghemoglobin/genetics , Nitroso Compounds/metabolism , Plant Proteins/genetics , Glycine max/genetics
5.
Oxid Med Cell Longev ; 2019: 2798154, 2019.
Article in English | MEDLINE | ID: mdl-31089406

ABSTRACT

Hypochlorous acid (HOCl), one of the major precursors of free radicals in body cells and tissues, is endowed with strong prooxidant activity. In living systems, dinitrosyl iron complexes (DNIC) with glutathione ligands play the role of nitric oxide donors and possess a broad range of biological activities. At micromolar concentrations, DNIC effectively inhibit HOCl-induced lysis of red blood cells (RBCs) and manifest an ability to scavenge alkoxyl and alkylperoxyl radicals generated in the reaction of HOCl with tert-butyl hydroperoxide. DNIC proved to be more effective cytoprotective agents and organic free radical scavengers in comparison with reduced glutathione (GSH). At the same time, the kinetics of HOCl-induced oxidation of glutathione ligands in DNIC is slower than in the case of GSH. HOCl-induced oxidative conversions of thiolate ligands cause modification of DNIC, which manifests itself in inclusion of other ligands. It is suggested that the strong inhibiting effect of DNIC with glutathione on HOCl-induced lysis of RBCs is determined by their antioxidant and regulatory properties.


Subject(s)
Cytoprotection/drug effects , Erythrocytes/drug effects , Glutathione/pharmacology , Hemolysis/drug effects , Hypochlorous Acid/toxicity , Iron/pharmacology , Nitrogen Oxides/pharmacology , Protective Agents/pharmacology , Albumins/metabolism , Glutathione/chemistry , Humans , Iron/chemistry , Ligands , Nitrogen Oxides/chemistry , Peroxidase/metabolism
6.
Cell Biochem Biophys ; 77(1): 99-107, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30218405

ABSTRACT

Since mitochondria are the main cellular source of reactive oxygen species, it is important to study the effect of dietary phenolic compounds on the level of ROS in these organelles. Using the EPR spectroscopy and TIRON probe, the ability of the investigated phenols (quercetin, rutin, caffeic acid, curcumin, and resveratrol) to scavenge superoxide anion radicals generated by isolated heart mitochondria of Wistar rats under variable oxygen partial pressure was studied. It was shown that during a 10 min incubation, caffeic acid in concentrations of 10-500 µM most effectively scavenged superoxide radicals formed in the complex III of the mitochondrial respiratory chain. A comparable antioxidant effect of rutin under these experimental conditions was observed at higher concentrations of 1-10 mM. The antioxidant activity of quercetin in the concentration range of 10-500 µM during the first minutes of incubation was higher than that of caffeic acid. Of the phenolic compounds studied, curcumin had the least effect on the superoxide radicals.


Subject(s)
Antioxidants/chemistry , Electron Spin Resonance Spectroscopy , Mitochondria, Heart/metabolism , Polyphenols/chemistry , Superoxides/chemistry , Animals , Curcumin/chemistry , Quercetin/chemistry , Rats , Rats, Wistar , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism , Superoxides/metabolism
7.
Biofactors ; 44(3): 237-244, 2018 May.
Article in English | MEDLINE | ID: mdl-29469215

ABSTRACT

Mitochondria are widely known as a major source of reactive oxygen and nitrogen species for the cardiovascular system. Numerous studies established that superoxide anion radical production by heart mitochondria is only slightly suppressed under conditions of deep hypoxia, but is completely blocked under anoxia. It was found also that dinitrosyl iron complexes (DNIC) compare favourably with other physiologically active derivatives of nitric oxide (NO). DNIC with glutathione effectively scavenge superoxide radicals generated by mitochondria at different partial pressures of oxygen. Under conditions of simulated hypoxia, the synthesis of thiol-containing DNIC takes place in mitochondria and is concomitant with a significant decrease in the concentration of NO metabolites at the reoxygenation step. Free NO required for DNIC synthesis is generated in the reaction of S-nitrosothiols with superoxide or during single-electron oxidation of the nitroxyl radical (HNO) by coenzyme Q. Plausible mechanisms of antiradical effects of DNIC and their protective role in oxidative stress induced by hypoxia/reoxygenation of myocardial tissues are considered. © 2018 BioFactors, 44(3):237-244, 2018.


Subject(s)
Electrons , Iron/metabolism , Mitochondria, Heart/drug effects , Nitrogen Oxides/metabolism , Oxygen/pharmacology , Superoxides/antagonists & inhibitors , Animals , Buffers , Electron Spin Resonance Spectroscopy , Free Radical Scavengers/metabolism , Glutathione/metabolism , Glutathione/pharmacology , Male , Mitochondria, Heart/metabolism , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , Oxidation-Reduction , Rats , Rats, Wistar , Solutions , Superoxides/metabolism , Ubiquinone/metabolism
8.
J Biol Inorg Chem ; 22(1): 153-160, 2017 01.
Article in English | MEDLINE | ID: mdl-27878396

ABSTRACT

Dinitrosyl iron complexes (DNICs) are physiological NO derivatives and account for many NO functions in biology. Polyfunctional dipeptide carnosine (beta-alanyl-L-histidine) is considered to be a very promising pharmacological agent. It was shown that in the system containing carnosine, iron ions and Angeli's salt, a new type of DNICs bound with carnosine as ligand {(carnosine)2-Fe-(NO)2}, was formed. We studied how the carbonyl compound methylglyoxal influenced this process. Carnosine-bound DNICs appear to be one of the cell's adaptation mechanisms when the amount of reactive carbonyl compounds increases at hyperglycemia. These complexes can also participate in signal and regulatory ways of NO and can act as protectors at oxidative and carbonyl stress conditions.


Subject(s)
Carnosine/metabolism , Iron/metabolism , Nitrogen Oxides/metabolism , Iron/chemistry , Nitrogen Oxides/chemistry , Protein Binding/drug effects , Pyruvaldehyde/pharmacology
9.
J Diabetes ; 8(3): 398-404, 2016 May.
Article in English | MEDLINE | ID: mdl-25990785

ABSTRACT

BACKGROUND: The aim of the present study was to examine the effect of aldehyde modification on antioxidant enzyme activity in diabetic patients. METHODS: The activity of commercially available antioxidant enzymes (catalase, glutathione peroxidase [GPx], and Cu,Zn-superoxide dismutase [SOD]) was determined in vitro prior to and after aldehyde modification. The activity of erythrocyte Cu,Zn-SOD was assayed in blood drawn from healthy donors, diabetic patients with decompensated carbohydrate metabolism, and diabetic patients after glucose-lowering therapy. RESULTS: In vitro aldehyde modification had no effect on catalase activity, but diminished GPx and Cu,Zn-SOD activity. In diabetic patients with decompensated carbohydrate metabolism, glucose-lowering therapy significantly increased Cu,Zn-SOD activity, the effect being especially pronounced after administration of metformin. CONCLUSIONS: It is likely that metformin antagonizes the aldehyde-induced inhibition of erythrocyte Cu,Zn-SOD in diabetic patients more effectively than sulfonylurea drugs.


Subject(s)
Aldehydes/pharmacology , Antioxidants/chemistry , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/enzymology , Erythrocytes/enzymology , Animals , Antioxidants/metabolism , Case-Control Studies , Cattle , Diabetes Mellitus, Type 2/blood , Erythrocytes/drug effects , Female , Glyoxal/pharmacology , Humans , Hypoglycemic Agents/therapeutic use , Male , Malondialdehyde/pharmacology , Metformin/therapeutic use , Middle Aged
10.
Nat Prod Commun ; 11(8): 1189-1192, 2016 Aug.
Article in English | MEDLINE | ID: mdl-30725588

ABSTRACT

This review considers dinitrosyl iron complexes (DNICs) and some other metabolites of nitric oxide (NO) in plants. Nitric oxide is vital for all living organisms, although its role in plants has been studied insufficiently compared with that in animals. We presume that the spectrum of its functions in plants is even wider than in animals. The main NO metabolites could be S-nitrosothiols, DNICs and peroxynitrite. Of particular interest are pro- and antioxidant properties of these compounds. DNICs function and their potential biosynthetic role in plants are practically unknown and brought to the limelight in this review. Since the process of NO biosynthesis in plants is still under discussion, we also specially examine this problem.


Subject(s)
Iron/metabolism , Nitric Oxide/metabolism , Nitrogen Oxides/metabolism , Plants/metabolism , Plants/chemistry
11.
Clin Chem Lab Med ; 52(1): 161-8, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-23979125

ABSTRACT

BACKGROUND: Nitric oxide (NO) and its metabolites can nitrosylate hemoglobin (Hb) through the heme iron. Nitrihemoglobin (nitriHb) can be formed as result of porphyrin vinyl group modification with nitrite. However, in those with diabetes the non-enzymatic glycation of Hb amino acids residues (the Maillard reaction) can take place. The objectives of this study were to investigate effects of the Maillard reaction on the interaction of methemoglobin (metHb) with S-nitrosoglutathione (GSNO) and nitrite. METHODS: Nitrosylhemoglobin production was registered using increasing optical density at 572 nm and compared with 592 nm, and with EPR spectroscopy. Formation of nitriHb was determined using an absorbance band of reduced hemochromogen (582 nm) in the alkaline pyridine solution. Accumulation of fluorescent advanced glycation end-products of Hb was measured through increasing of fluorescence at 385-395 nm (excitation λ=320 nm). RESULTS: We determined that NO metabolites such as GSNO and nitrite at physiological pH values and aerobic conditions caused modification of metHb porphyrin vinyl groups with nitriHb formation. It was ascertained that this formation was inhibited by superoxide dismutase. In microaerobic conditions metHb was nitrosylated under the action of GSNO or GSNO with methylglyoxal. Nitrite nitrosylated metHb only in the presence of methylglyoxal. It was shown that GSNO inhibited accumulation of fluorescent products which formed during Hb glycation with methylglyoxal. CONCLUSIONS: The assumption was made that intermediates of the Hb glycation reaction play an important role both in vinyl group nitration and in heme iron nitrosylation. Oxygen content in reaction medium is an important factor influencing these processes. These effects can play an important role in pathogenesis of the diseases connected with carbonyl, oxidative and nitrosative stresses.


Subject(s)
Hemoglobins/chemistry , Maillard Reaction , Methemoglobin/chemistry , Models, Chemical , Electron Spin Resonance Spectroscopy , Hemoglobins/metabolism , Hydrogen-Ion Concentration , Methemoglobin/metabolism , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Nitrites/chemistry , S-Nitrosoglutathione/chemistry , Superoxide Dismutase/metabolism
12.
Hemoglobin ; 37(3): 205-18, 2013.
Article in English | MEDLINE | ID: mdl-23662713

ABSTRACT

The Maillard reaction is the key process in protein modification during pathologies connected with carbonyl stress. It was shown in system modeling that Maillard reaction interaction of L-lysine (L-lys) with methylglyoxal (MG) led to the formation of compounds reducing methemoglobin (metHb). Under the above conditions and in the presence of S-nitrosoglutathione (GSNO), metHb nitrosylation took place. Processes of metHb reduction and nitrosylation had the lag phase that was dependent on the presence of oxygen (O2) in the reaction mixture. Oxygen interacting with organic free radicals of the Maillard reaction inhibited hemoglobin (Hb) reduction and hence Hb nitrosylation during the first minutes of the reaction. It was also shown that the yield of organic free-radical intermediates of the L-lys with MG was increased in the presence of GSNO and metHb. All effects described could be a result of the formation of active red-ox GSNO derivates in the Maillard reaction. These derivates are probably mediators of one-electron oxidation of dialkylimine by MG. Anion radicals of S-nitrosothiols can function as such mediators.


Subject(s)
Methemoglobin/chemistry , Models, Chemical , S-Nitrosoglutathione/chemistry , Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , Hemoglobins/chemistry , Hydrogen Peroxide , Kinetics , Lysine/chemistry , Maillard Reaction , Oxidation-Reduction , Oxygen/chemistry , Protein Carbonylation , Pyruvaldehyde/chemistry
13.
Methods Enzymol ; 436: 445-61, 2008.
Article in English | MEDLINE | ID: mdl-18237648

ABSTRACT

Prooxidant and antioxidant properties of nitric oxide (NO) during oxidative stress are mostly dependent on its interaction with reactive oxygen species, Fe ions, and hemoproteins. One form of NO storage and transportation in cells and tissues is dinitrosyl iron complexes (DNIC), which can bind with both low-molecular-weight thiols and proteins, including hemoglobin. It was shown that dinitrosyl iron complexes bound with hemoglobin (Hb-DNIC) were formed in rabbit erythrocytes after bringing low-molecular-weight DNIC with thiosulfate into blood. It was ascertained that Hb-DNIC intercepted free radicals reacting with hemoglobin SH-groups and prevented oxidative modification of this protein caused by hydrogen peroxide. Destruction of Hb-DNIC can take place in the presence of both hydrogen peroxide and tert-butyl hydroperoxide. Hb-DNIC can also be destroyed at the enzymatic generation of superoxide-anion radical in the xanthine-xanthine oxidase system. If aeration in this system was absent, formation of the nitrosyl R-form of hemoglobin could be seen during the process of Hb-DNIC destruction. Study of Hb-DNIC interaction with reactive oxygen metabolites is important for understanding NO and Hb roles in pathological processes that could result from oxidative stress.


Subject(s)
Hemoglobins/chemistry , Hemoglobins/metabolism , Iron/chemistry , Iron/metabolism , Nitrogen Oxides/chemistry , Nitrogen Oxides/metabolism , Animals , Electron Spin Resonance Spectroscopy , Female , Free Radicals/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Oxidation-Reduction , Oxidative Stress , Protein Binding , Rabbits , Spin Labels , Superoxides/metabolism , tert-Butylhydroperoxide/metabolism , tert-Butylhydroperoxide/pharmacology
14.
Nitric Oxide ; 18(1): 37-46, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18036856

ABSTRACT

Destructive effect of superoxide anions O2- derived from KO(2) or xanthine-xanthine oxidase system on dinitrosyl-iron complexes bound with bovine albumin or methemoglobin (DNIC-BSA or DNIC-MetHb) was demonstrated. The sensitivity of DNIC-BSA synthesized by the addition of DNIC with cysteine, thiosulfate or phosphate (DNIC-BSA-1, DNIC-BSA-2 or DNIC-BSA-3, respectively) to destructive action of O2- decreased in row: DNIC-BSA-1>DNIC-BSA-3>DNIC-BSA-2. The estimated rate constant for the reaction between O2- and DNIC-BSA-3 was equal to approximately 10(7)M(-1)s(-1). However, hydrogen peroxide and tert-butyl hydrogenperoxide (t-BOOH) did not induce any noticeable degradation of DNIC-BSA-3 even when used at concentrations exceeding by one order of magnitude those of the complex. As to their action on DNIC-MetHb both hydrogen peroxide and t-BOOH-induced rapid degradation of the complex. Both agents could induce the process due to the effect of alkylperoxyl or protein-derived free radicals formed at the interaction of the agents with ferri-heme groups of MetHb. Peroxynitrite (ONOO(-)) could also initiate protein-bound DNIC degradation more efficiently in the reaction with DNIC-BSA-3. Higher resistance of DNIC-MetHb to peroxynitrite was most probably due to the protective action of heme groups on ONOO(-). However, the analysis allows to suggest that the interaction of protein-bound DNICs with O2- is the only factor responsible for the degradation of the complexes in cells and tissues.


Subject(s)
Iron/chemistry , Methemoglobin/chemistry , Nitrogen Oxides/chemistry , Reactive Nitrogen Species/chemistry , Reactive Oxygen Species/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cattle , Hydrogen Peroxide/chemistry , Peroxynitrous Acid/chemistry , Time Factors , tert-Butylhydroperoxide/chemistry
15.
Mol Cell Biochem ; 249(1-2): 129-40, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12956408

ABSTRACT

The oxidative modification of low density lipoprotein (LDL) is thought to play an important role in atherogenesis. Drugs of beta-hydroxy-beta-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) family are usually used as a very effective lipid-lowering preparations but they simultaneously block biosynthesis of both cholesterol and ubiquinone Q10 (coenzyme Q), which is an intermediate electron carrier in the mitochondrial respiratory chain. It is known that reduced form of ubiquinone Q10 acts in the human LDL as very effective natural antioxidant. Daily per os administration of HMG-CoA reductase inhibitor simvastatin to rats for 30 day had no effect on high-energy phosphates (adenosin triphosphate, creatine phosphate) content in liver but decreased a level of these substances in myocardium. We study the Cu2+-mediated susceptibility of human LDL to oxidation and the levels of free radical products of LDL lipoperoxidation in LDL particles from patients with atherosclerosis after 3 months treatment with natural antioxidants vitamin E as well as during 6 months administration of HMG-CoA reductase inhibitors such as pravastatin and cerivastatin in monotherapy and in combination with natural antioxidant ubiquinone Q10 or synthetic antioxidant probucol in a double-blind placebo-controlled trials. The 3 months of natural antioxidant vitamin E administration (400 mg daily) to patients did not increase the susceptibility of LDL to oxidation. On the other hand, synthetic antioxidant probucol during long-time period of treatment (3-6 months) in low-dose (250 mg daily) doesn't change the lipid metabolism parameters in the blood of patients but their high antioxidant activity was observed. Really, after oxidation of probucol-contained LDL by C-15 animal lipoxygenase in these particles we identified the electron spin resonance signal of probucol phenoxyl radical that suggests the interaction of LDL-associated probucol with lipid radicals in vivo. We observed that 6 months treatment of patients with pravastatine (40 mg daily) or cerivastatin (0.4 mg daily) was followed by sufficiently accumulation of LDL lipoperoxides in vivo. In contrast, the 6 months therapy with pravastatin in combination with ubiquinone Q10 (60 mg daily) sharply decreased the LDL initial lipoperoxides level whereas during treatment with cerivastatin in combination with probucol (250 mg daily) the LDL lipoperoxides concentration was maintained on an invariable level. Therefore, antioxidants may be very effective in the prevention of atherogenic oxidative modification of LDL during HMG-CoA reductase inhibitors therapy.


Subject(s)
Antioxidants/pharmacology , Lipid Peroxidation/drug effects , Lipoproteins, LDL/metabolism , Ubiquinone/analogs & derivatives , Animals , Arteriosclerosis/drug therapy , Coenzymes , Dose-Response Relationship, Drug , Double-Blind Method , Enzyme Inhibitors/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Liver/enzymology , Male , Middle Aged , Oxidation-Reduction , Pravastatin/administration & dosage , Pravastatin/pharmacology , Probucol/administration & dosage , Pyridines/administration & dosage , Pyridines/pharmacology , Rats , Time Factors , Ubiquinone/administration & dosage , Ubiquinone/pharmacology , Vitamin E/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...