Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Inflamm (Lond) ; 20(1): 15, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37127610

ABSTRACT

BACKGROUND: The Kynurenine Pathway (KP) of tryptophan degradation and glutamate toxicity is implicated in several neurological disorders, including depression. The therapeutic potential of mesenchymal stromal cells (MSC), owing to their well documented phagocytosis-driven mechanism of immunomodulation and neuroprotection, has been tested in many neurological disorders. However, their potential to influence KP and the glutamatergic system has not yet been investigated. Hence, this study sought to investigate the effect of HUCPVC, a rich and potent source of MSC, on Lipopolysaccharide (LPS)-activated KP metabolites, KP enzymes, and key components of glutamate neurotransmission. METHODS: The immunomodulatory effect of peripherally administered HUCPVC on the expression profile of kynurenine pathway metabolites and enzymes was assessed in the plasma and brain of mice treated with LPS using LCMS and QPCR. An assessment of the glutamatergic system, including selected receptors, transporters and related proteins was also conducted by QPCR, immunohistochemistry and Western blot. RESULTS: HUCPVC were found to modulate LPS-induced activation of KP enzymes and metabolites in the brain associated with neurotoxicity. Moreover, the reduced expression of the glutamatergic components due to LPS was also found to be significantly improved by HUCPVC. CONCLUSIONS: The immunomodulatory properties of HUCPVC appear to confer neuroprotection, at least in part, through their ability to modulate the KP in the brain. This KP modulation enhances neuroprotective regulators and downregulates neurotoxic consequences, including glutamate neurotoxicity, which is associated with neuroinflammation and depressive behavior.

2.
Cytotherapy ; 25(2): 125-137, 2023 02.
Article in English | MEDLINE | ID: mdl-36473795

ABSTRACT

BACKGROUND AIMS: Because of their potent immunomodulatory and anti-inflammatory properties, mesenchymal stromal cells are a major focus in the field of stem cell therapy. However, the precise mechanisms underlying this are not entirely understood. Human umbilical cord perivascular cells (HUCPVCs) are a promising cell therapy candidate. This study was designed to evaluate the time course and mechanisms by which HUCPVCs mitigate lipopolysaccharide (LPS)-induced systemic and neurological inflammation in immunocompetent mice. To explore the underlying mechanisms, the authors investigated the biodistribution and fate of HUCPVCs. METHODS: Male C57BL/6 mice were randomly allocated to four groups: control, LPS, HUCPVCs or LPS + HUCPVCs. Quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and cytokine arrays were used to assess changes in pro-inflammatory mediators systemically and in the brain. Depressive-like behavioral changes were evaluated via a forced swim test. Quantum dot (qDot) labeling and immunohistochemistry were used to assess the biodistribution and fate of HUCPVCs and interactions with recipient innate immune cells. RESULTS: A single intravenously delivered dose of HUCPVCs significantly reduced the systemic inflammation induced by LPS within the first 24 h after administration. HUCPVC treatment abrogated the upregulated expression of pro-inflammatory genes in the hippocampus and cortex and attenuated depressive-like behavior induced by LPS treatment. Biodistribution analysis revealed that HUCPVC-derived qDots rapidly accumulated in the lungs and demonstrated limited in vivo persistence. Furthermore, qDot signals were associated with major recipient innate immune cells and promoted a shift in macrophages toward a regulatory phenotype in the lungs. CONCLUSIONS: Overall, this study demonstrates that HUCPVCs can successfully reduce systemic and neurological inflammation induced by LPS within the first 24 h after administration. Biodistribution and fate analyses suggest a critical role for the innate immune system in the HUCPVC-based immunomodulation mechanism.


Subject(s)
Lipopolysaccharides , Mesenchymal Stem Cells , Animals , Male , Mice , Inflammation/chemically induced , Inflammation/therapy , Inflammation/metabolism , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Tissue Distribution , Umbilical Cord , Human Umbilical Vein Endothelial Cells , Humans
3.
J Neurophysiol ; 124(6): 1754-1765, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33026923

ABSTRACT

Under extreme environmental conditions, many insects enter a protective coma associated with a spreading depolarization (SD) of neurons and glia in the central nervous system (CNS). Recovery depends on the restoration of ion gradients by mechanisms that are not well understood. We investigated the effects of glybenclamide, an ATP-sensitive K+ (KATP) channel inhibitor, and pinacidil, a KATP activator, on the mechanisms involved in anoxic coma induction and recovery in Locusta migratoria. KATP channels allow for the efflux of K+ when activated, thereby linking cellular metabolic state to membrane potential. In intact locusts, we measured the time to enter a coma after water immersion and the time to recover the righting reflex after returning to normoxia. In semi-intact preparations, we measured the time to SD in the metathoracic ganglion after flooding the preparation with saline or exposing it to 100% N2 gas, and the time for the transperineurial potential to recover after removal of the saline or return to air. Glybenclamide decreased the time to coma induction, whereas pinacidil increased induction times. Glybenclamide also lengthened the time to recovery and decreased the rate of recovery of transperineurial potential after SD. These results were not the same as the effects of 10-2 M ouabain on N2-induced SD. We conclude that glybenclamide affects the CNS response to anoxia via inhibition of KATP channels and not an effect on the Na+/K+-ATPase.NEW & NOTEWORTHY We demonstrate the involvement of ATP-sensitive K+ (KATP) channels during recovery from spreading depolarization (SD) induced via anoxic coma in locusts. KATP inhibition using glybenclamide impaired ion homeostasis across the blood-brain barrier resulting in a longer time to recovery of transperineurial potential following SD. Comparison with ouabain indicates that the effects of glybenclamide are not mediated by the Na+/K+-ATPase but are a result of KATP channel inhibition.


Subject(s)
Coma , Cortical Excitability/physiology , Ganglia, Invertebrate/physiology , Hypoxia , KATP Channels/metabolism , Membrane Potentials/physiology , Potassium Channel Blockers/pharmacology , Animals , Coma/metabolism , Coma/physiopathology , Cortical Excitability/drug effects , Female , Ganglia, Invertebrate/drug effects , Glyburide/pharmacology , Hypoxia/metabolism , Hypoxia/physiopathology , KATP Channels/antagonists & inhibitors , Locusta migratoria , Male , Membrane Potentials/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...