Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 13(4)2022 03 24.
Article in English | MEDLINE | ID: mdl-35456380

ABSTRACT

Although high altitude training has been increasingly popular among endurance athletes, the molecular and cellular bases of this adaptation remain poorly understood. We aimed to define the underlying physiological changes and screen for potential biomarkers of adaptation using transcriptional profiling of whole blood. Seven elite female speed skaters were profiled on the 18th day of high-altitude adaptation. Whole blood RNA-seq before and after an intense 1 h skating bout was used to measure gene expression changes associated with exercise. In order to identify the genes specifically regulated at high altitudes, we have leveraged the data from eight previously published microarray datasets studying blood expression changes after exercise at sea level. Using cell type-specific signatures, we were able to deconvolute changes of cell type abundance from individual gene expression changes. Among these were PHOSPHO1, with a known role in erythropoiesis, and MARC1 with a role in endogenic NO metabolism. We find that platelet and erythrocyte counts uniquely respond to altitude exercise, while changes in neutrophils represent a more generic marker of intense exercise. Publicly available data from both single cell atlases and exercise-related blood profiling dramatically increases the value of whole blood RNA-seq for the dynamic evaluation of physiological changes in an athlete's body.


Subject(s)
Altitude , Exercise , Acclimatization , Athletes , Exercise/physiology , Female , Humans , Sequence Analysis, RNA
2.
Mol Genet Genomic Med ; 7(11): e964, 2019 11.
Article in English | MEDLINE | ID: mdl-31482689

ABSTRACT

BACKGROUND: Allele frequency data from large exome and genome aggregation projects such as the Genome Aggregation Database (gnomAD) are of ultimate importance to the interpretation of medical resequencing data. However, allele frequencies might significantly differ in poorly studied populations that are underrepresented in large-scale projects, such as the Russian population. METHODS: In this work, we leveraged our access to a large dataset of 694 exome samples to analyze genetic variation in the Northwest Russia. We compared the spectrum of genetic variants to the dbSNP build 151, and made estimates of ClinVar-based autosomal recessive (AR) disease allele prevalence as compared to gnomAD r. 2.1. RESULTS: An estimated 9.3% of discovered variants were not present in dbSNP. We report statistically significant overrepresentation of pathogenic variants for several Mendelian disorders, including phenylketonuria (PAH, rs5030858), Wilson's disease (ATP7B, rs76151636), factor VII deficiency (F7, rs36209567), kyphoscoliosis type of Ehlers-Danlos syndrome (FKBP14, rs542489955), and several other recessive pathologies. We also make primary estimates of monogenic disease incidence in the population, with retinal dystrophy, cystic fibrosis, and phenylketonuria being the most frequent AR pathologies. CONCLUSION: Our observations demonstrate the utility of population-specific allele frequency data to the diagnosis of monogenic disorders using high-throughput technologies.


Subject(s)
Biomarkers/analysis , Exome Sequencing/methods , Genetic Diseases, Inborn/epidemiology , Genetic Diseases, Inborn/genetics , Genetic Testing/methods , Genetic Variation , DNA Mutational Analysis , Hepatolenticular Degeneration/epidemiology , Hepatolenticular Degeneration/genetics , Humans , Prevalence , Prognosis , Russia/epidemiology
3.
Genes (Basel) ; 9(8)2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30126146

ABSTRACT

Type 2 diabetes (T2D) and obesity are common chronic disorders with multifactorial etiology. In our study, we performed an exome sequencing analysis of 110 patients of Russian ethnicity together with a multi-perspective approach based on biologically meaningful filtering criteria to detect novel candidate variants and loci for T2D and obesity. We have identified several known single nucleotide polymorphisms (SNPs) as markers for obesity (rs11960429), T2D (rs9379084, rs1126930), and body mass index (BMI) (rs11553746, rs1956549 and rs7195386) (p < 0.05). We show that a method based on scoring of case-specific variants together with selection of protein-altering variants can allow for the interrogation of novel and known candidate markers of T2D and obesity in small samples. Using this method, we identified rs328 in LPL (p = 0.023), rs11863726 in HBQ1 (p = 8 × 10-5), rs112984085 in VAV3 (p = 4.8 × 10-4) for T2D and obesity, rs6271 in DBH (p = 0.043), rs62618693 in QSER1 (p = 0.021), rs61758785 in RAD51B (p = 1.7 × 10-4), rs34042554 in PCDHA1 (p = 1 × 10-4), and rs144183813 in PLEKHA5 (p = 1.7 × 10-4) for obesity; and rs9379084 in RREB1 (p = 0.042), rs2233984 in C6orf15 (p = 0.030), rs61737764 in ITGB6 (p = 0.035), rs17801742 in COL2A1 (p = 8.5 × 10-5), and rs685523 in ADAMTS13 (p = 1 × 10-6) for T2D as important susceptibility loci in Russian population. Our results demonstrate the effectiveness of whole exome sequencing (WES) technologies for searching for novel markers of multifactorial diseases in cohorts of limited size in poorly studied populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...