Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37511000

ABSTRACT

Aristolochia manshuriensis is a relic liana, which is widely used in traditional Chinese herbal medicine and is endemic to the Manchurian floristic region. Since this plant is rare and slow-growing, alternative sources of its valuable compounds could be explored. Herein, we established hairy root cultures of A. manshuriensis transformed with Agrobacterium rhizogenes root oncogenic loci (rol)B and rolC genes. The accumulation of nitrogenous secondary metabolites significantly improved in transgenic cell cultures. Specifically, the production of magnoflorine reached up to 5.72 mg/g of dry weight, which is 5.8 times higher than the control calli and 1.7 times higher than in wild-growing liana. Simultaneously, the amounts of aristolochic acids I and II, responsible for the toxicity of Aristolochia species, decreased by more than 10 fold. Consequently, the hairy root extracts demonstrated pronounced cytotoxicity against human glioblastoma cells (U-87 MG), cervical cancer cells (HeLa CCL-2), and colon carcinoma (RKO) cells. However, they did not exhibit significant activity against triple-negative breast cancer cells (MDA-MB-231). Our findings suggest that hairy root cultures of A. manshuriensis could be considered for the rational production of valuable A. manshuriensis compounds by the modification of secondary metabolism.


Subject(s)
Aristolochia , Humans , Plants , Medicine, Chinese Traditional , China , Plant Roots/metabolism
2.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835465

ABSTRACT

Atomic force microscopy (AFM) recently burst into biomedicine, providing morphological and functional characteristics of cancer cells and their microenvironment responsible for tumor invasion and progression, although the novelty of this assay needs to coordinate the malignant profiles of patients' specimens to diagnostically valuable criteria. Applying high-resolution semi-contact AFM mapping on an extended number of cells, we analyzed the nanomechanical properties of glioma early-passage cell cultures with a different IDH1 R132H mutation status. Each cell culture was additionally clustered on CD44+/- cells to find possible nanomechanical signatures that differentiate cell phenotypes varying in proliferative activity and the characteristic surface marker. IDH1 R132H mutant cells compared to IDH1 wild-type ones (IDH1wt) characterized by two-fold increased stiffness and 1.5-fold elasticity modulus. CD44+/IDH1wt cells were two-fold more rigid and much stiffer than CD44-/IDH1wt ones. In contrast to IDH1 wild-type cells, CD44+/IDH1 R132H and CD44-/IDH1 R132H did not exhibit nanomechanical signatures providing statistically valuable differentiation of these subpopulations. The median stiffness depends on glioma cell types and decreases according to the following manner: IDH1 R132H mt (4.7 mN/m), CD44+/IDH1wt (3.7 mN/m), CD44-/IDH1wt (2.5 mN/m). This indicates that the quantitative nanomechanical mapping would be a promising assay for the quick cell population analysis suitable for detailed diagnostics and personalized treatment of glioma forms.


Subject(s)
Glioma , Hyaluronan Receptors , Isocitrate Dehydrogenase , Humans , Glioma/diagnosis , Glioma/metabolism , Glioma/pathology , Hyaluronan Receptors/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Microscopy, Atomic Force , Tumor Microenvironment , Mutation
3.
Biomedicines ; 10(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35885046

ABSTRACT

Cell and tissue nanomechanics has been intriguingly introduced into biomedical research, not only complementing traditional immunophenotyping and molecular analysis, but also bringing unexpected new insights for clinical diagnostics and bioengineering. However, despite the progress in the study of individual cells in culture by atomic force microscopy (AFM), its application for mapping live tissues has a number of technical limitations. Here, we elaborate a new technique to study live slices of normal brain tissue and tumors by combining morphological and nanomechanical AFM mapping in high throughput scanning mode, in contrast to the typically utilized force spectroscopy mode based on single-point probe application. This became possible due to the combined use of an appropriate embedding matrix for vibratomy and originally modified AFM probes. The embedding matrix composition was carefully developed by regulating the amounts of agar and collagen I to reach optimal viscoelastic properties for obtaining high-quality live slices that meet AFM requirements. AFM tips were rounded by irradiating them with focused nanosecond laser pulses, while the resulting tip morphology was verified by scanning electron microscopy. Live slices preparation and AFM investigation take only 55 min and could be combined with a vital cell tracer analysis or immunostaining, thus making it promising for biomedical research and clinical diagnostics.

4.
Front Bioeng Biotechnol ; 10: 989932, 2022.
Article in English | MEDLINE | ID: mdl-36601386

ABSTRACT

Human artificial chromosomes (HACs) have provided a useful tool to study kinetochore structure and function, gene delivery, and gene expression. The HAC propagates and segregates properly in the cells. Recently, we have developed an experimental high-throughput imaging (HTI) HAC-based assay that allows the identification of genes whose depletion leads to chromosome instability (CIN). The HAC carries a GFP transgene that facilitates quantitative measurement of CIN. The loss of HAC/GFP may be measured by flow cytometry or fluorescence scanning microscope. Therefore, CIN rate can be measured by counting the proportion of fluorescent cells. Here, the HAC/GFP-based assay has been adapted to screen anticancer compounds for possible induction or elevation of CIN. We analyzed 24 cytotoxic plant extracts. Punica granatum leaf extract (PLE) indeed sharply increases CIN rate in HT1080 fibrosarcoma cells. PLE treatment leads to cell cycle arrest, reduction of mitotic index, and the increased numbers of micronuclei (MNi) and nucleoplasmic bridges (NPBs). PLE-mediated increased CIN correlates with the induction of double-stranded breaks (DSBs). We infer that the PLE extract contains a component(s) that elevate CIN, making it a candidate for further study as a potential cancer treatment. The data also provide a proof of principle for the utility of the HAC/GFP-based system in screening for natural products and other compounds that elevate CIN in cancer cells.

5.
Mar Drugs ; 19(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34940667

ABSTRACT

C1q domain-containing (C1qDC) proteins are a group of biopolymers involved in immune response as pattern recognition receptors (PRRs) in a lectin-like manner. A new protein MkC1qDC from the hemolymph plasma of Modiolus kurilensis bivalve mollusk widespread in the Northwest Pacific was purified. The isolation procedure included ammonium sulfate precipitation followed by affinity chromatography on pectin-Sepharose. The full-length MkC1qDC sequence was assembled using de novo mass-spectrometry peptide sequencing complemented with N-terminal Edman's degradation, and included 176 amino acid residues with molecular mass of 19 kDa displaying high homology to bivalve C1qDC proteins. MkC1qDC demonstrated antibacterial properties against Gram-negative and Gram-positive strains. MkC1qDC binds to a number of saccharides in Ca2+-dependent manner which characterized by structural meta-similarity in acidic group enrichment of galactose and mannose derivatives incorporated in diversified molecular species of glycans. Alginate, κ-carrageenan, fucoidan, and pectin were found to be highly effective inhibitors of MkC1qDC activity. Yeast mannan, lipopolysaccharide (LPS), peptidoglycan (PGN) and mucin showed an inhibitory effect at concentrations three orders of magnitude greater than for the most effective saccharides. MkC1qDC localized to the mussel hemal system and interstitial compartment. Intriguingly, MkC1qDC was found to suppress proliferation of human adenocarcinoma HeLa cells in a dose-dependent manner, indicating to the biomedical potential of MkC1qDC protein.


Subject(s)
Membrane Glycoproteins/genetics , Mollusca , Proteins/genetics , Receptors, Complement/genetics , Receptors, Pattern Recognition/genetics , Animals , Aquatic Organisms , Humans , Membrane Glycoproteins/chemistry , Pacific Ocean , Proteins/chemistry , Receptors, Complement/chemistry , Receptors, Pattern Recognition/chemistry
6.
Molecules ; 26(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203222

ABSTRACT

The effect of cultivation temperatures (37, 26, and 18 °C) on the conformational quality of Yersinia pseudotuberculosis phospholipase A1 (PldA) in inclusion bodies (IBs) was studied using green fluorescent protein (GFP) as a folding reporter. GFP was fused to the C-terminus of PldA to form the PldA-GFP chimeric protein. It was found that the maximum level of fluorescence and expression of the chimeric protein is observed in cells grown at 18 °C, while at 37 °C no formation of fluorescently active forms of PldA-GFP occurs. The size, stability in denaturant solutions, and enzymatic and biological activity of PldA-GFP IBs expressed at 18 °C, as well as the secondary structure and arrangement of protein molecules inside the IBs, were studied. Solubilization of the chimeric protein from IBs in urea and SDS is accompanied by its denaturation. The obtained data show the structural heterogeneity of PldA-GFP IBs. It can be assumed that compactly packed, properly folded, proteolytic resistant, and structurally less organized, susceptible to proteolysis polypeptides can coexist in PldA-GFP IBs. The use of GFP as a fusion partner improves the conformational quality of PldA, but negatively affects its enzymatic activity. The PldA-GFP IBs are not toxic to eukaryotic cells and have the property to penetrate neuroblastoma cells. Data presented in the work show that the GFP-marker can be useful not only as target protein folding indicator, but also as a tool for studying the molecular organization of IBs, their morphology, and localization in E. coli, as well as for visualization of IBs interactions with eukaryotic cells.


Subject(s)
Bacterial Proteins/chemistry , Green Fluorescent Proteins/chemistry , Inclusion Bodies/chemistry , Phospholipases A1/chemistry , Recombinant Fusion Proteins/chemistry , Yersinia pseudotuberculosis/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Phospholipases A1/biosynthesis , Phospholipases A1/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Yersinia pseudotuberculosis/enzymology
7.
Molecules ; 24(8)2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30999681

ABSTRACT

Skin cancer has always been and remains the leader among all tumors in terms of occurrence. One of the main factors responsible for skin cancer, natural and artificial UV radiation, causes the mutations that transform healthy cells into cancer cells. These mutations inactivate apoptosis, an event required to avoid the malignant transformation of healthy cells. Among these deadliest of cancers, melanoma and its 'younger sister', Merkel cell carcinoma, are the most lethal. The heavy toll of skin cancers stems from their rapid progression and the fact that they metastasize easily. Added to this is the difficulty in determining reliable margins when excising tumors and the lack of effective chemotherapy. Possibly the biggest problem posed by skin cancer is reliably detecting the extent to which cancer cells have spread throughout the body. The initial tumor is visible and can be removed, whereas metastases are invisible to the naked eye and much harder to eliminate. In our opinion, antisense oligonucleotides, which can be used in the form of targeted ointments, provide real hope as a treatment that will eliminate cancer cells near the tumor focus both before and after surgery.


Subject(s)
Antineoplastic Agents/therapeutic use , Melanoma , Mutation , Oligonucleotides, Antisense/therapeutic use , Skin Neoplasms , Ultraviolet Rays/adverse effects , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/radiation effects , Humans , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
8.
Environ Toxicol Pharmacol ; 39(2): 597-605, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25682006

ABSTRACT

The effects of hexestrol (HXS) and nonylphenol (NP) on plasma vitellogenin (Vtg) concentration in barfin plaice Liopsetta pinnifasciata was studied during spring and autumn experiment. In L. pinnifasciata two "complete" forms of Vtgs, namely VtgAa and VtgAb, were previously described which may be separated due to molecular mass of their largest polypeptide in SDS-PAGE. In spring, the injection of HXS led to an increase in Vtg concentrations in both females and males. SDS-PAGE analysis of plasma from HXS-exposed fish produced only one prominent band at a molecular mass of 180 kDa that corresponds to an increase in VtgAb levels. NP injected in fish in spring induced statistically significant increasing of Vtg concentration in males, and only one type of Vtg, as in case of HXS, accumulated in plasma. In autumn, the injection of HXS results to the increase of Vtg concentration in the plasma of females and males, electrophoretic analysis of plasma proteins showed that only a 98 kDa polypeptide, corresponding to the VtgAa-type showed a significant increase. The blood plasma ratios of VtgAa and VtgAb in experimental fish are discussed in relation to the season and stage of reproductive cycle.


Subject(s)
Estrogens/toxicity , Flounder/blood , Hexestrol/toxicity , Phenols/toxicity , Vitellogenins/blood , Animals , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL