Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Am J Hum Genet ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815585

ABSTRACT

Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.

2.
Cell ; 187(7): 1701-1718.e28, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38503283

ABSTRACT

Biomolecules incur damage during stress conditions, and damage partitioning represents a vital survival strategy for cells. Here, we identified a distinct stress granule (SG), marked by dsRNA helicase DHX9, which compartmentalizes ultraviolet (UV)-induced RNA, but not DNA, damage. Our FANCI technology revealed that DHX9 SGs are enriched in damaged intron RNA, in contrast to classical SGs that are composed of mature mRNA. UV exposure causes RNA crosslinking damage, impedes intron splicing and decay, and triggers DHX9 SGs within daughter cells. DHX9 SGs promote cell survival and induce dsRNA-related immune response and translation shutdown, differentiating them from classical SGs that assemble downstream of translation arrest. DHX9 modulates dsRNA abundance in the DHX9 SGs and promotes cell viability. Autophagy receptor p62 is activated and important for DHX9 SG disassembly. Our findings establish non-canonical DHX9 SGs as a dedicated non-membrane-bound cytoplasmic compartment that safeguards daughter cells from parental RNA damage.


Subject(s)
RNA , Stress Granules , Cytoplasm , RNA, Messenger/genetics , Stress, Physiological , Humans , HeLa Cells
3.
Nature ; 624(7990): 173-181, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38030723

ABSTRACT

In diploid organisms, biallelic gene expression enables the production of adequate levels of mRNA1,2. This is essential for haploinsufficient genes, which require biallelic expression for optimal function to prevent the onset of developmental disorders1,3. Whether and how a biallelic or monoallelic state is determined in a cell-type-specific manner at individual loci remains unclear. MSL2 is known for dosage compensation of the male X chromosome in flies. Here we identify a role of MSL2 in regulating allelic expression in mammals. Allele-specific bulk and single-cell analyses in mouse neural progenitor cells revealed that, in addition to the targets showing biallelic downregulation, a class of genes transitions from biallelic to monoallelic expression after MSL2 loss. Many of these genes are haploinsufficient. In the absence of MSL2, one allele remains active, retaining active histone modifications and transcription factor binding, whereas the other allele is silenced, exhibiting loss of promoter-enhancer contacts and the acquisition of DNA methylation. Msl2-knockout mice show perinatal lethality and heterogeneous phenotypes during embryonic development, supporting a role for MSL2 in regulating gene dosage. The role of MSL2 in preserving biallelic expression of specific dosage-sensitive genes sets the stage for further investigation of other factors that are involved in allelic dosage compensation in mammalian cells, with considerable implications for human disease.


Subject(s)
Alleles , Gene Expression Regulation , Ubiquitin-Protein Ligases , Animals , Female , Male , Mice , DNA Methylation , Dosage Compensation, Genetic , Embryonic Development , Enhancer Elements, Genetic , Haploinsufficiency , Histones/metabolism , Mice, Knockout , Promoter Regions, Genetic , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Sci Adv ; 9(34): eadh5598, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37624894

ABSTRACT

Members of the NSL histone acetyltransferase complex are involved in multiorgan developmental syndromes. While the NSL complex is known for its importance in early development, its role in fully differentiated cells remains enigmatic. Using a kidney-specific model, we discovered that deletion of NSL complex members KANSL2 or KANSL3 in postmitotic podocytes led to catastrophic kidney dysfunction. Systematic comparison of two primary differentiated cell types reveals the NSL complex as a master regulator of intraciliary transport genes in both dividing and nondividing cells. NSL complex ablation led to loss of cilia and impaired sonic hedgehog pathway in ciliated fibroblasts. By contrast, nonciliated podocytes responded with altered microtubule dynamics and obliterated podocyte functions. Finally, overexpression of wild-type but not a double zinc finger (ZF-ZF) domain mutant of KANSL2 rescued the transcriptional defects, revealing a critical function of this domain in NSL complex assembly and function. Thus, the NSL complex exhibits bifurcation of functions to enable diversity of specialized outcomes in differentiated cells.


Subject(s)
Cell Nucleus , Hedgehog Proteins , Hedgehog Proteins/genetics , Gene Expression Regulation , Cell Differentiation/genetics , Fibroblasts
5.
Life Sci Alliance ; 6(9)2023 09.
Article in English | MEDLINE | ID: mdl-37399316

ABSTRACT

The NSL complex is a transcriptional activator. Germline-specific knockdown of NSL complex subunits NSL1, NSL2, and NSL3 results in reduced piRNA production from a subset of bidirectional piRNA clusters, accompanied by widespread transposon derepression. The piRNAs most transcriptionally affected by NSL2 and NSL1 RNAi map to telomeric piRNA clusters. At the chromatin level, these piRNA clusters also show decreased levels of H3K9me3, HP1a, and Rhino after NSL2 depletion. Using NSL2 ChIP-seq in ovaries, we found that this protein specifically binds promoters of telomeric transposons HeT-A, TAHRE, and TART Germline-specific depletion of NSL2 also led to a reduction in nuclear Piwi in nurse cells. Our findings thereby support a role for the NSL complex in promoting the transcription of piRNA precursors from telomeric piRNA clusters and in regulating Piwi levels in the Drosophila female germline.


Subject(s)
Drosophila Proteins , Piwi-Interacting RNA , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Drosophila/genetics , Telomere/genetics , Telomere/metabolism
6.
Nat Rev Mol Cell Biol ; 23(5): 329-349, 2022 05.
Article in English | MEDLINE | ID: mdl-35042977

ABSTRACT

Lysine acetylation is a widespread and versatile protein post-translational modification. Lysine acetyltransferases and lysine deacetylases catalyse the addition or removal, respectively, of acetyl groups at both histone and non-histone targets. In this Review, we discuss several features of acetylation and deacetylation, including their diversity of targets, rapid turnover, exquisite sensitivity to the concentrations of the cofactors acetyl-CoA, acyl-CoA and NAD+, and tight interplay with metabolism. Histone acetylation and non-histone protein acetylation influence a myriad of cellular and physiological processes, including transcription, phase separation, autophagy, mitosis, differentiation and neural function. The activity of lysine acetyltransferases and lysine deacetylases can, in turn, be regulated by metabolic states, diet and specific small molecules. Histone acetylation has also recently been shown to mediate cellular memory. These features enable acetylation to integrate the cellular state with transcriptional output and cell-fate decisions.


Subject(s)
Histones , Lysine Acetyltransferases , Acetylation , Histones/metabolism , Lysine/metabolism , Lysine Acetyltransferases/metabolism , Protein Processing, Post-Translational
7.
Nat Commun ; 12(1): 6212, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707105

ABSTRACT

Noncommunicable diseases (NCDs) account for over 70% of deaths world-wide. Previous work has linked NCDs such as type 2 diabetes (T2D) to disruption of chromatin regulators. However, the exact molecular origins of these chronic conditions remain elusive. Here, we identify the H4 lysine 16 acetyltransferase MOF as a critical regulator of central carbon metabolism. High-throughput metabolomics unveil a systemic amino acid and carbohydrate imbalance in Mof deficient mice, manifesting in T2D predisposition. Oral glucose tolerance testing (OGTT) reveals defects in glucose assimilation and insulin secretion in these animals. Furthermore, Mof deficient mice are resistant to diet-induced fat gain due to defects in glucose uptake in adipose tissue. MOF-mediated H4K16ac deposition controls expression of the master regulator of glucose metabolism, Pparg and the entire downstream transcriptional network. Glucose uptake and lipid storage can be reconstituted in MOF-depleted adipocytes in vitro by ectopic Glut4 expression, PPARγ agonist thiazolidinedione (TZD) treatment or SIRT1 inhibition. Hence, chronic imbalance in H4K16ac promotes a destabilisation of metabolism triggering the development of a metabolic disorder, and its maintenance provides an unprecedented regulatory epigenetic mechanism controlling diet-induced obesity.


Subject(s)
Carbon/metabolism , Diet, High-Fat/adverse effects , Histones/metabolism , Lysine/metabolism , Obesity/etiology , Acetylation , Adipocytes/metabolism , Adipose Tissue/metabolism , Amino Acids/metabolism , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation , Genetic Predisposition to Disease/genetics , Glucose/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Haploinsufficiency , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Lipid Metabolism , Mice , Obesity/genetics , Obesity/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism
8.
Cell ; 182(1): 127-144.e23, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32502394

ABSTRACT

Before zygotic genome activation (ZGA), the quiescent genome undergoes reprogramming to transition into the transcriptionally active state. However, the mechanisms underlying euchromatin establishment during early embryogenesis remain poorly understood. Here, we show that histone H4 lysine 16 acetylation (H4K16ac) is maintained from oocytes to fertilized embryos in Drosophila and mammals. H4K16ac forms large domains that control nucleosome accessibility of promoters prior to ZGA in flies. Maternal depletion of MOF acetyltransferase leading to H4K16ac loss causes aberrant RNA Pol II recruitment, compromises the 3D organization of the active genomic compartments during ZGA, and causes downregulation of post-zygotically expressed genes. Germline depletion of histone deacetylases revealed that other acetyl marks cannot compensate for H4K16ac loss in the oocyte. Moreover, zygotic re-expression of MOF was neither able to restore embryonic viability nor onset of X chromosome dosage compensation. Thus, maternal H4K16ac provides an instructive function to the offspring, priming future gene activation.


Subject(s)
Histones/metabolism , Lysine/metabolism , Transcriptional Activation/genetics , Acetylation , Animals , Base Sequence , Chromosome Segregation/genetics , Conserved Sequence , Dosage Compensation, Genetic , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Embryo, Nonmammalian/metabolism , Evolution, Molecular , Female , Genome , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Male , Mammals/genetics , Mice , Mutation/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleosomes/metabolism , Oocytes/metabolism , Promoter Regions, Genetic , RNA Polymerase II/metabolism , X Chromosome/metabolism , Zygote/metabolism
9.
Trends Genet ; 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-34756331

ABSTRACT

Hematopoiesis is the process by which both fetal and adult organisms derive the full repertoire of blood cells from a single multipotent progenitor cell type, the hematopoietic stem cells (HSCs). Correct enactment of this process relies on a synergistic interplay between genetically encoded differentiation programs and a host of cell-intrinsic and cell-extrinsic factors. These include the influence of the HSC niche microenvironment, action of specific transcription factors, and alterations in intracellular metabolic state. The consolidation of these inputs with the genetically encoded program into a coherent differentiation program for each lineage is thought to rely on epigenetic modifiers. Recent work has delineated the precise contributions of different classes of epigenetic modifiers to HSC self-renewal as well as lineage specification and differentiation into various cell types. Here, we bring together what is currently known about chromatin status and the development of cells in the hematopoietic system under normal and abnormal conditions.

10.
Nat Commun ; 10(1): 2682, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31213602

ABSTRACT

RNA-protein complexes play essential regulatory roles at nearly all levels of gene expression. Using in vivo crosslinking and RNA capture, we report a comprehensive RNA-protein interactome in a metazoan at four levels of resolution: single amino acids, domains, proteins and multisubunit complexes. We devise CAPRI, a method to map RNA-binding domains (RBDs) by simultaneous identification of RNA interacting crosslinked peptides and peptides adjacent to such crosslinked sites. CAPRI identifies more than 3000 RNA proximal peptides in Drosophila and human proteins with more than 45% of them forming new interaction interfaces. The comparison of orthologous proteins enables the identification of evolutionary conserved RBDs in globular domains and intrinsically disordered regions (IDRs). By comparing the sequences of IDRs through evolution, we classify them based on the type of motif, accumulation of tandem repeats, conservation of amino acid composition and high sequence divergence.


Subject(s)
Evolution, Molecular , Proteomics/methods , RNA-Binding Motifs/genetics , RNA-Binding Proteins/genetics , RNA/metabolism , Amino Acid Sequence/genetics , Animals , Cell Line , Conserved Sequence/genetics , Cross-Linking Reagents/chemistry , Drosophila , Humans , Peptides/chemistry , Peptides/genetics , Protein Binding/genetics , Proteome/genetics , RNA/chemistry , RNA-Binding Proteins/chemistry
11.
Nat Commun ; 6: 7889, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26243146

ABSTRACT

The evolutionary conserved NSL complex is a prominent epigenetic regulator controlling expression of thousands of genes. Here we uncover a novel function of the NSL complex members in mitosis. As the cell enters mitosis, KANSL1 and KANSL3 undergo a marked relocalisation from the chromatin to the mitotic spindle. By stabilizing microtubule minus ends in a RanGTP-dependent manner, they are essential for spindle assembly and chromosome segregation. Moreover, we identify KANSL3 as a microtubule minus-end-binding protein, revealing a new class of mitosis-specific microtubule minus-end regulators. By adopting distinct functions in interphase and mitosis, KANSL proteins provide a link to coordinate the tasks of faithful expression and inheritance of the genome during different phases of the cell cycle.


Subject(s)
Mitosis , Nuclear Proteins/metabolism , Spindle Apparatus/metabolism , Animals , Cell Cycle Proteins/metabolism , Drosophila melanogaster , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Xenopus laevis , ran GTP-Binding Protein/metabolism
12.
New Phytol ; 192(2): 328-37, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21762166

ABSTRACT

Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investigated the effect of temperature variation on plasma membrane (PM) viscosity. We used dispersion tracking of photoactivated green fluorescent protein (GFP) and fluorescence recovery after photobleaching in wild-type and desaturase mutant Arabidopsis thaliana plants along with membrane lipid saturation analysis to monitor the effect of temperature and membrane lipid composition on PM viscosity. Plasma membrane viscosity in A. thaliana is negatively correlated with ambient temperature only under constant-temperature conditions. In the more natural environment of temperature cycles, plants actively manage PM viscosity to counteract the direct effects of temperature. Plasma membrane viscosity is regulated by altering the proportion of desaturated fatty acids. In cold conditions, cell membranes accumulate desaturated fatty acids, which decreases membrane viscosity and vice versa. Moreover, we show that control of fatty acid desaturase 2 (FAD2)-dependent lipid desaturation is essential for this homeostasis of membrane viscosity. Finally, a lack of FAD2 function results in aberrant temperature responses.


Subject(s)
Cell Membrane/physiology , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Cell Membrane/chemistry , Cell Membrane/genetics , Cell Membrane/metabolism , Circadian Rhythm , Fatty Acids/metabolism , Genetic Variation , Homeostasis , Plants, Genetically Modified , Temperature , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...