Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
2.
BMC Genomics ; 24(1): 786, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110864

ABSTRACT

BACKGROUND: Cymbidium sinense is an orchid that is typically used as a potted plant, given its high-grade ornamental characteristics, and is most frequently distributed in China and SE Asia. The inability to strictly regulate flowering in this economically important potted and cut-flower orchid is a bottleneck that limits its industrial development. Studies on C. sinense flowering time genes would help to elucidate the mechanism regulating flowering. There are very few studies on the genetic regulation of flowering pathways in C. sinense. Photoperiod significantly affects the flowering of C. sinense, but it was unknown how the CONSTANS gene family is involved in regulating flowering. RESULTS: In this study, eight CONSTANS-like genes were identified and cloned. They were divided into three groups based on a phylogenetic analysis. Five representative CsCOL genes (CsCOL3/4/6/8/9) were selected from the three groups to perform expression characterization and functional study. CsCOL3/4/6/8/9 are nucleus-localized proteins, and all five CsCOL genes were expressed in all organs, mainly in leaves followed by sepals. The expression levels of CsCOL3/4 (group I) were higher in all organs than other CsCOL genes. Developmental stage specific expression revealed that the expression of CsCOL3/4/9 peaked at the initial flowering stage. In contrast, the transcript level of CsCOL6/8 was highest at the pedicel development stage. Photoperiodic experiments demonstrated that the transcripts of the five CsCOL genes exhibited distinct diurnal rhythms. Under LD conditions, the overexpression of CsCOL3/4 promoted early flowering, and CsCOL6 had little effect on flowering time, whereas CsCOL8 delayed flowering of Arabidopsis thaliana. However, under SD conditions, overexpression of CsCOL4/6/8 promoted early flowering and the rosette leaves growth, and CsCOL3 induced flower bud formation in transgenic Arabidopsis. CONCLUSION: The phylogenetic analysis, temporal and spatial expression patterns, photoperiodic rhythms and functional study indicate that CsCOL family members in C. sinense were involved in growth, development and flowering regulation through different photoperiodic pathway. The results will be useful for future research on mechanisms pertaining to photoperiod-dependent flowering, and will also facilitate genetic engineering-based research that uses Cymbidium flowering time genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phylogeny , Photoperiod , Circadian Rhythm , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Flowers , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/metabolism
3.
Sci Rep ; 13(1): 21122, 2023 11 30.
Article in English | MEDLINE | ID: mdl-38036691

ABSTRACT

Stropharia rugosoannulata is a well-renowned edible mushroom due to its nutritional and nutraceutical properties. This article focuses on the study of stipe cracking in S. rugosoannulata, a common issue in outdoor cultivation of this mushroom in South China. The findings reveal that the stipe cracks of S. rugosoannulata are primarily horizontal (transverse). Typically, cracks appear between the annulus and the middle part of the stipe prior to the opening of the pileus. Following the opening of the pileus, a fresh crack appears on the upper part of the stipe above the annulus. During the growth of S. rugosoannulata, two distinct elongation sections are observed in the stipe, separated by the annulus. The location of cracks coincides with these elongation sections, and the sequence of crack occurrences matches with the sequence of these elongation sections. The frequency of stipe cracking varies according to developmental stages and humidity conditions. The conclusion of this study is that S. rugosoannulata stipes crack during elongation and within elongation sections when humidity is low (≤ 60%), with the S3 developmental stage having the highest risk of cracking.


Subject(s)
Agaricales , Wine , Humidity , China
4.
J Fungi (Basel) ; 9(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37623563

ABSTRACT

Giant Stropharia (S. rugoso-annulata) is an edible mushroom recommended for consumption by the Food and Agriculture Organization of the United Nations. It possesses significant culinary and medicinal functionalities. The characteristics of this mushroom include high protein content, abundant bioactive compounds, delicious and sweet taste, and pleasant aroma. In recent years, the S. rugoso-annulata industry has seen strong growth, especially in China. This article presents the first comprehensive and systematic review of the nutritional, bioactive, and flavor components of S. rugoso-annulata, as well as their influencing factors. This article provides scientific evidence for the production of high-quality S. rugoso-annulata mushrooms, the extraction of bioactive components, post-harvest storage, and culinary processing, aiming to promote the consumption of S. rugoso-annulata and the health of consumers.

5.
J Integr Plant Biol ; 65(9): 2071-2085, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37212722

ABSTRACT

Orchid plants develop protocorms upon germination and produce protocorm-like structures called protocorm-like bodies (PLBs) from protocorms and somatic cells via tissue culture. Protocorm-like bodies have broad technical application potential in the orchid industry and their regeneration is a distinct developmental process in the plant kingdom. However, little is known about this unparalleled developmental program. In this study, we identified a PLB-abundant gene, ethylene response factor (ERF), and a transcription factor named DoERF5, and determined its important role in PLB regeneration in Dendrobium orchid. Overexpression of DoERF5 in Dendrobium greatly enhanced the PLB regeneration from PLB and stem explants, and upregulated the expression of WOUND-INDUCED DEDIFFERENTIATION (DoWIND) homologs and SHOOT MERISTEMLESS (DoSTM), as well as the genes involved in cytokinin biosynthesis (DoIPT) and the cytokinin response factors (DoARRs). However, silencing DoERF5 reduced the regeneration rate of PLBs, and downregulated the expression of DoWIND homologs, DoSTM and DoARRs. We demonstrated that DoERF5 is directly bound to the DoSTM promoter and regulates its expression. In addition, overexpression of DoSTM in Dendrobium orchid resulted in favorable regeneration of PLBs. Our results clarify that DoERF5 regulates the regeneration of PLB by enhancing DoSTM expression. Our findings provide new insights into how DoERF5 mediates PLB regeneration and offers technical potential in improving clonal propagation, preservation, and the bioengineering of orchids.


Subject(s)
Dendrobium , Dendrobium/genetics , Reproduction , Germination
7.
BMC Genomics ; 24(1): 199, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055721

ABSTRACT

BACKGROUND: The auxin indole-3-acetic acid (IAA) is a vital phytohormone that influences plant growth and development. Our previous work showed that IAA content decreased during flower development in the medicinally important orchid Dendrobium officinale, while Aux/IAA genes were downregulated. However, little information about auxin-responsive genes and their roles in D. officinale flower development exists. RESULTS: This study validated 14 DoIAA and 26 DoARF early auxin-responsive genes in the D. officinale genome. A phylogenetic analysis classified the DoIAA genes into two subgroups. An analysis of cis-regulatory elements indicated that they were related by phytohormones and abiotic stresses. Gene expression profiles were tissue-specific. Most DoIAA genes (except for DoIAA7) were sensitive to IAA (10 µmol/L) and were downregulated during flower development. Four DoIAA proteins (DoIAA1, DoIAA6, DoIAA10 and DoIAA13) were mainly localized in the nucleus. A yeast two-hybrid assay showed that these four DoIAA proteins interacted with three DoARF proteins (DoARF2, DoARF17, DoARF23). CONCLUSIONS: The structure and molecular functions of early auxin-responsive genes in D. officinale were investigated. The DoIAA-DoARF interaction may play an important role in flower development via the auxin signaling pathway.


Subject(s)
Dendrobium , Dendrobium/genetics , Dendrobium/metabolism , Phylogeny , Plant Proteins/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant
8.
BMC Plant Biol ; 23(1): 93, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36782128

ABSTRACT

BACKGROUND: Gibberellins (GAs) are widely involved in plant growth and development. DELLA proteins are key regulators of plant development and a negative regulatory factor of GA. Dendrobium officinale is a valuable traditional Chinese medicine, but little is known about D. officinale DELLA proteins. Assessing the function of D. officinale DELLA proteins would provide an understanding of their roles in this orchid's development. RESULTS: In this study, the D. officinale DELLA gene family was identified. The function of DoDELLA1 was analyzed in detail. qRT-PCR analysis showed that the expression levels of all DoDELLA genes were significantly up-regulated in multiple shoots and GA3-treated leaves. DoDELLA1 and DoDELLA3 were significantly up-regulated in response to salt stress but were significantly down-regulated under drought stress. DoDELLA1 was localized in the nucleus. A strong interaction was observed between DoDELLA1 and DoMYB39 or DoMYB308, but a weak interaction with DoWAT1. CONCLUSIONS: In D. officinale, a developmental regulatory network involves a close link between DELLA and other key proteins in this orchid's life cycle. DELLA plays a crucial role in D. officinale development.


Subject(s)
Dendrobium , Dendrobium/genetics , Dendrobium/metabolism , Gibberellins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
9.
Protoplasma ; 260(2): 483-495, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35792983

ABSTRACT

These YABBY genes are transcription factors (TFs) that play crucial roles in various developmental processes in plants. There is no comprehensive characterization of YABBY genes in a valuable Chinese orchid herb, Dendrobium officinale. In this study, a total of nine YABBY genes were identified in the D. officinale genome. These YABBY genes were divided into four subfamilies: CRC/DL, FIL, INO, and YAB2. Expression pattern analyses showed that eight of the YABBY genes were strongly expressed in reproductive organs (flower buds) but weakly expressed in vegetative organs (roots, leaves, and stems). DoYAB1, DoYAB5, DoDL1, and DoDL3 were abundant in the small flower bud stage, while DoDL2 showed no changes throughout flower development. In addition, DoDL1-3 genes were strongly expressed in the column, tenfold more than in sepals, petals, and the lip. DoYAB1 from the FIL subfamily, DoYAB2 from the YAB2 subfamily, DoYAB3 from the INO subfamily, and DoDL2 and DoDL3 from the CRC/DL subfamily were selected for further analyses. Subcellular localization analysis showed that DoYAB1-3, DoDL2, and DoDL3 were localized in the nucleus. DoYAB2 and DoYAB3 interacted strongly with DoWOX2 and DoWOX4, while DoYAB1 showed a weak interaction with DoWOX4. These results reveal a regulatory network involving YABBY and WOX proteins in D. officinale. Our data provide clues to understanding the role of YABBY genes in the regulation of flower development in this orchid and shed additional light on the function of YABBY genes in plants.


Subject(s)
Dendrobium , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant/genetics
10.
Plant Physiol Biochem ; 190: 24-34, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36088784

ABSTRACT

Dendrobium officinale, which is a medicine food homology plant, contains many metabolites, especially polysaccharides and flavonoids. Unlike flowers and stems, which are the most frequently harvested organs for a variety of uses, leaves tend to be discarded. This study assessed main metabolites in leaves to identify the most appropriate timing of collection during harvest, which was divided into three stages (S1-S3: 8, 10, and 11 months after sprouting, respectively). Metabolomic and transcriptomic analyses of S1-S3 were performed. Water-soluble polysaccharides (WSPs), flavonoids and free amino acids (FAAs) were detected in leaves. WSPs decreased from S1 to S3 but flavonoids and some FAAs (e.g., phophoserine) increased from S1 to S2, then decreased from S2 to S3. In all three stages, mannose was the dominant monosaccharide among WSPs, followed by glucose. In S2, 35 flavonoids were identified, the most abundant being rutin, schaftoside and vitexin, while 34 FAAs were identified in all three stages, the most abundant being tyrosine, phosphoserine and alanine. A total of 2584, 3414 and 2032 differentially expressed genes (DEGs) were discovered in S1 vs S2, S1 vs S3 and S1 vs S3, respectively. Correlation analysis revealed that five DEGs (DoSUS, DoXYLA, DoFRK, DoGMP, and DoCSLA), two DEGs (DoDFR, and DoANS) and a single DEG (DoPGAM) were involved in the metabolism of WSPs, flavonoids and phosphoserine, respectively. The findings of this study lay a foundation for the commercial exploitation of metabolites in the harvested leaves of D. officinale, and the use of detected DEGs in applied genetic studies.


Subject(s)
Dendrobium , Alanine/metabolism , Dendrobium/genetics , Dendrobium/metabolism , Flavonoids/metabolism , Glucose/metabolism , Mannose/metabolism , Monosaccharides/metabolism , Phosphoserine/metabolism , Polysaccharides/metabolism , Rutin/metabolism , Transcriptome , Tyrosine/metabolism , Water/metabolism
11.
Protoplasma ; 259(3): 641-657, 2022 May.
Article in English | MEDLINE | ID: mdl-34251532

ABSTRACT

Mannan polysaccharides (MPs), which contain substituted O-acetyl groups in their backbone, are abundant in the medicinal plant Dendrobium officinale. Acetyl groups can influence the physiological and biochemical properties of polysaccharides, which mainly accumulate in the stems of D. officinale at four developmental stages (S1-S4), showing an increasing trend and a link with water-soluble polysaccharides (WSPs) and mannose. The genes coding for enzymes that catalyze O-acetyl groups to MPs are unknown in D. officinale. The TRICHOME BIREFRINGENCE-LIKE (TBL) gene family contains TBL and DUF231 domains that can transfer O-acetyl groups to various polysaccharides. Based on an established D. officinale genome database, 37 DoTBL genes were identified. Analysis of cis-elements in the promoter region showed that DoTBL genes might respond to different hormones and abiotic stresses. Most of the genes with MeJA-responsive elements were upregulated or downregulated after treatment with MeJA. qRT-PCR results demonstrated that DoTBL genes had significantly higher expression levels in stems and leaves than in roots. Eight DoTBL genes showed relatively higher expression at S2-S4 stages, which showed a link with the content of WSPs and O-acetyl groups. DoTBL35 and its homologous gene DoTBL34 displayed the higher mRNA level in different organs and developmental stages, which might participate in the acetylation of MPs in D. officinale. The subcellular localization of DoTBL34 and DoTBL35 reveals that the endoplasmic reticulum may play an important role in the acetylation of MPs.


Subject(s)
Dendrobium , Dendrobium/chemistry , Genes, Synthetic , Mannans/analysis , Mannans/metabolism , Plant Leaves/metabolism , Polysaccharides/metabolism
12.
Int J Mol Sci ; 22(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069261

ABSTRACT

The APETALA2 (AP2) transcription factors (TFs) play crucial roles in regulating development in plants. However, a comprehensive analysis of the AP2 family members in a valuable Chinese herbal orchid, Dendrobium officinale, or in other orchids, is limited. In this study, the 14 DoAP2 TFs that were identified from the D. officinale genome and named DoAP2-1 to DoAP2-14 were divided into three clades: euAP2, euANT, and basalANT. The promoters of all DoAP2 genes contained cis-regulatory elements related to plant development and also responsive to plant hormones and stress. qRT-PCR analysis showed the abundant expression of DoAP2-2, DoAP2-5, DoAP2-7, DoAP2-8 and DoAP2-12 genes in protocorm-like bodies (PLBs), while DoAP2-3, DoAP2-4, DoAP2-6, DoAP2-9, DoAP2-10 and DoAP2-11 expression was strong in plantlets. In addition, the expression of some DoAP2 genes was down-regulated during flower development. These results suggest that DoAP2 genes may play roles in plant regeneration and flower development in D. officinale. Four DoAP2 genes (DoAP2-1 from euAP2, DoAP2-2 from euANT, and DoAP2-6 and DoAP2-11 from basal ANT) were selected for further analyses. The transcriptional activation of DoAP2-1, DoAP2-2, DoAP2-6 and DoAP2-11 proteins, which were localized in the nucleus of Arabidopsis thaliana mesophyll protoplasts, was further analyzed by a dual-luciferase reporter gene system in Nicotiana benthamiana leaves. Our data showed that pBD-DoAP2-1, pBD-DoAP2-2, pBD-DoAP2-6 and pBD-DoAP2-11 significantly repressed the expression of the LUC reporter compared with the negative control (pBD), suggesting that these DoAP2 proteins may act as transcriptional repressors in the nucleus of plant cells. Our findings on AP2 genes in D. officinale shed light on the function of AP2 genes in this orchid and other plant species.


Subject(s)
Dendrobium/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Dendrobium/growth & development , Gene Expression Regulation, Plant , Genome-Wide Association Study , Multigene Family , Phylogeny , Plant Leaves/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Protein Interaction Maps , Regulatory Sequences, Nucleic Acid , Stress, Physiological/genetics , Nicotiana/genetics , Transcription Factors/metabolism
13.
Biomolecules ; 11(5)2021 05 15.
Article in English | MEDLINE | ID: mdl-34063498

ABSTRACT

Dendrobium officinale Kimura et Migo is a precious traditional Chinese medicine. Despite D. officinale displaying a good salt-tolerance level, the yield and growth of D. officinale were impaired drastically by the increasing soil secondary salinization. The molecular mechanisms of D. officinale plants' adaptation to salt stress are not well documented. Therefore, in the present study, D. officinale plants were treated with 250 mM NaCl. Transcriptome analysis showed that salt stress significantly altered various metabolic pathways, including phenylalanine metabolism, flavonoid biosynthesis, and α-linolenic acid metabolism, and significantly upregulated the mRNA expression levels of DoAOC, DoAOS, DoLOX2S, DoMFP, and DoOPR involved in the jasmonic acid (JA) biosynthesis pathway, as well as rutin synthesis genes involved in the flavonoid synthesis pathway. In addition, metabolomics analysis showed that salt stress induced the accumulation of some compounds in D. officinale leaves, especially flavonoids, sugars, and alkaloids, which may play an important role in salt-stress responses of leaf tissues from D. officinale. Moreover, salt stress could trigger JA biosynthesis, and JA may act as a signal molecule that promotes flavonoid biosynthesis in D. officinale leaves. To sum up, D. officinale plants adapted to salt stress by enhancing the biosynthesis of secondary metabolites.


Subject(s)
Cyclopentanes/metabolism , Dendrobium/physiology , Flavonoids/metabolism , Oxylipins/metabolism , Biosynthetic Pathways , Dendrobium/genetics , Dendrobium/growth & development , Dendrobium/metabolism , Metabolome , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/physiology , Salt Stress , Transcriptome
14.
J Plant Physiol ; 258-259: 153356, 2021.
Article in English | MEDLINE | ID: mdl-33423816

ABSTRACT

Late embryogenesis abundant (LEA) proteins are widely involved in plant stress responsive, while their involvement in callus formation is largest unknown. In this study, we identified and conducted expression analysis of the LEA genes from Phalaenopsis equestris and Dendrobium officinale, and characterized a LEA gene from D. officinale. A total 57 and 59 LEA genes were identified in P. equestris and D. officinale, respectively. A phylogenetic analysis showed that AtM, LEA_5 and Dehydrin groups were absent in both orchids. LEA_1 group genes were strongly expressed in seeds, significantly down-regulated in flowers, and absent in vegetative organs (leaves, stems and roots) in both orchids. Moreover, LEA_1 and LEA_4 group genes from D. officinale were abundant in the protocorm-like body stage and were dramatically up-regulated in response to abscisic acid and salinity stress. A LEA_1 gene (DoLEA43) was selected for further functional analysis. DoLEA43 protein was localized in the cytoplasm and nucleus, and its promoter contained a WUN-motif that was modulated by wounding. Overexpression of DoLEA43 in Arabidopsis enhanced callus induction, causing changes to callus formation-related genes such as WIND1. Our results indicate the involvement of LEA genes in the induction of callus, which provide insights into plant regeneration.


Subject(s)
Gene Expression , Genes, Plant , Orchidaceae/genetics , Plant Proteins/genetics , Dendrobium/genetics , Dendrobium/metabolism , Gene Expression Profiling , Orchidaceae/metabolism , Plant Proteins/metabolism , Salt Stress/genetics
15.
BMC Plant Biol ; 21(1): 21, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407149

ABSTRACT

BACKGROUND: DNA methylation is a conserved and important epigenetic modification involved in the regulation of numerous biological processes, including plant development, secondary metabolism, and response to stresses. However, no information is available regarding the identification of cytosine-5 DNA methyltransferase (C5-MTase) and DNA demethylase (dMTase) genes in the orchid Dendrobium officinale. RESULTS: In this study, we performed a genome-wide analysis of DoC5-MTase and DodMTase gene families in D. officinale. Integrated analysis of conserved motifs, gene structures and phylogenetic analysis showed that eight DoC5-MTases were divided into four subfamilies (DoCMT, DoDNMT, DoDRM, DoMET) while three DodMTases were divided into two subfamilies (DoDML3, DoROS1). Multiple cis-acting elements, especially stress-responsive and hormone-responsive ones, were found in the promoter region of DoC5-MTase and DodMTase genes. Furthermore, we investigated the expression profiles of DoC5-MTase and DodMTase in 10 different tissues, as well as their transcript abundance under abiotic stresses (cold and drought) and at the seedling stage, in protocorm-like bodies, shoots, and plantlets. Interestingly, most DoC5-MTases were downregulated whereas DodMTases were upregulated by cold stress. At the seedling stage, DoC5-MTase expression decreased as growth proceeded, but DodMTase expression increased. CONCLUSIONS: These results provide a basis for elucidating the role of DoC5-MTase and DodMTase in secondary metabolite production and responses to abiotic stresses in D. officinale.


Subject(s)
DNA Methylation/genetics , DNA-Cytosine Methylases/genetics , Dendrobium/enzymology , Dendrobium/genetics , Oxidoreductases/genetics , Polysaccharides/genetics , Polysaccharides/metabolism , Arabidopsis/genetics , DNA-Cytosine Methylases/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genome-Wide Association Study , Oryza/genetics , Oxidoreductases/metabolism
16.
Protoplasma ; 258(4): 803-815, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33404922

ABSTRACT

Flavonols are important active ingredients that are found in abundance in Dendrobium officinale. Research on flavonol biosynthesis currently focuses on the more ubiquitous kaempferol and quercetin, but little is known on the biosynthesis of myricetin. Notably, flavonol synthase (FLS), which is responsible for the biosynthesis of flavonols, has not yet been identified. In this study, we isolated a flavonol synthase, DoFLS1, from Dendrobium officinale. DoFLS1 harbors conserved 2-oxoglutarate-dependent dioxygenase-specific and FLS-specific motifs. DoFLS1 is a cytoplasmic protein. DoFLS1 was universally expressed in roots, stems, and leaves of juvenile and adult D. officinale plants. DoFLS1 expression was strongly correlated in juvenile and adult D. officinale plants (R2 = 0.86 and 0.98, respectively; p < 0.01) with the average of corresponding flavonol levels. Transgenic Arabidopsis thaliana expressing DoFLS1 exhibited a 1.24-fold increase in flavonol content and a 25.78% decrease in anthocyanin content compare to wild-type plants, possibly resulting from a 78.61% increase in myricetin level. Moreover, the loss of anthocyanin was attributed to decreased expression of dihydroflavonol reductase (DFR) and anthocyanidin synthase (ANS) genes in transgenic A. thaliana that expressed DoFLS1. DoFLS1 also complemented the deficiency in flavonol of the A. thaliana fls1-3 mutant, which had reduced anthocyanin but increased flavonol content relative to the fls1-3 mutant. In addition, DoFLS1 was significantly upregulated after treatment with cold, drought or salicylic acid. These findings provide genetic evidence for the involvement of DoFLS1 in the biosynthesis of flavonol and in response to abiotic stresses.


Subject(s)
Arabidopsis , Dendrobium , Anthocyanins , Arabidopsis/genetics , Dendrobium/genetics , Ectopic Gene Expression , Flavonols , Gene Expression Regulation, Plant , Stress, Physiological/genetics
17.
PeerJ ; 8: e10482, 2020.
Article in English | MEDLINE | ID: mdl-33362966

ABSTRACT

The deacetylation of core histones controlled by the action of histone deacetylases (HDACs) plays an important role in the epigenetic regulation of plant gene transcription. However, no systematic analysis of HDAC genes in Dendrobium officinale, a medicinal orchid, has been performed. In the current study, a total of 14 histone deacetylases in D. officinale were identified and characterized using bioinformatics-based methods. These genes were classified into RPD3/HDA1, SIR2, and HD2 subfamilies. Most DoHDAC genes in the same subfamily shared similar structures, and their encoded proteins contained similar motifs, suggesting that the HDAC family members are highly conserved and might have similar functions. Different cis-acting elements in promoters were related to abiotic stresses and exogenous plant hormones. A transient expression assay in onion epidermal cells by Agrobacterium-mediated transformation indicated that all of the detected histone deacetylases such as DoHDA7, DoHDA9, DoHDA10, DoHDT3, DoHDT4, DoSRT1 and DoSRT2, were localized in the nucleus. A tissue-specific analysis based on RNA-seq suggested that DoHDAC genes play a role in growth and development in D. officinale. The expression profiles of selected DoHDAC genes under abiotic stresses and plant hormone treatments were analyzed by qRT-PCR. DoHDA3, DoHDA8, DoHDA10 and DoHDT4 were modulated by multiple abiotic stresses and phytohormones, indicating that these genes were involved in abiotic stress response and phytohormone signaling pathways. These results provide valuable information for molecular studies to further elucidate the function of DoHDAC genes.

18.
Int J Mol Sci ; 21(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977586

ABSTRACT

Floral scent is a key ornamental trait that determines the quality and commercial value of orchids. Geraniol, an important volatile monoterpene in orchids that attracts pollinators, is also involved in responses to stresses but the geraniol synthase (GES) responsible for its synthesis in the medicinal orchid Dendrobium officinale has not yet been identified. In this study, three potential geraniol synthases were mined from the D. officinale genome. DoGES1, which was localized in chloroplasts, was characterized as a geraniol synthase. DoGES1 was highly expressed in flowers, especially in petals. DoGES1 transcript levels were high in the budding stage of D. officinale flowers at 11:00 a.m. DoGES1 catalyzed geraniol in vitro, and transient expression of DoGES1 in Nicotiana benthamiana leaves resulted in the accumulation of geraniol in vivo. These findings on DoGES1 advance our understanding of geraniol biosynthesis in orchids, and lay the basis for genetic modification of floral scent in D. officinale or in other ornamental orchids.


Subject(s)
Chloroplast Proteins , Chloroplasts , Dendrobium , Flowers , Odorants , Phosphoric Monoester Hydrolases , Chloroplast Proteins/genetics , Chloroplast Proteins/metabolism , Chloroplasts/enzymology , Chloroplasts/genetics , Dendrobium/enzymology , Dendrobium/genetics , Flowers/enzymology , Flowers/genetics , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Nicotiana/enzymology , Nicotiana/genetics
19.
Int J Mol Sci ; 21(17)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872385

ABSTRACT

The acetylation or deacetylation of polysaccharides can influence their physical properties and biological activities. One main constituent of the edible medicinal orchid, Dendrobium officinale, is water-soluble polysaccharides (WSPs) with substituted O-acetyl groups. Both O-acetyl groups and WSPs show a similar trend in different organs, but the genes coding for enzymes that transfer acetyl groups to WSPs have not been identified. In this study, we report that REDUCED WALL ACETYLATION (RWA) proteins may act as acetyltransferases. Three DoRWA genes were identified, cloned, and sequenced. They were sensitive to abscisic acid (ABA), but there were no differences in germination rate and root length between wild type and 35S::DoRWA3 transgenic lines under ABA stress. Three DoRWA proteins were localized in the endoplasmic reticulum. DoRWA3 had relatively stronger transcript levels in organs where acetyl groups accumulated than DoRWA1 and DoRWA2, was co-expressed with polysaccharides synthetic genes, so it was considered as a candidate acetyltransferase gene. The level of acetylation of polysaccharides increased significantly in the seeds, leaves and stems of three 35S::DoRWA3 transgenic lines compared to wild type plants. These results indicate that DoRWA3 can transfer acetyl groups to polysaccharides and is a candidate protein to improve the biological activity of other edible and medicinal plants.


Subject(s)
Dendrobium/growth & development , Plant Proteins/genetics , Polysaccharides/metabolism , Abscisic Acid/pharmacology , Acetylation , Cloning, Molecular , Dendrobium/drug effects , Endoplasmic Reticulum/metabolism , Gene Expression Regulation, Plant/drug effects , Germination/drug effects , Phylogeny , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/physiology , Sequence Analysis, DNA
20.
Sci Rep ; 9(1): 13818, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554868

ABSTRACT

Members of the MYB superfamily act as regulators in a wide range of biological processes in plants. Despite this, the MYB superfamily from the Orchidaceae has not been identified, and MYB genes related to bioactive water-soluble polysaccharide (WSP) biosynthesis are relatively unknown. In this study, we identified 159 and 165 MYB genes from two orchids, Phalaenopsis equestris and Dendrobium officinale, respectively. The MYB proteins were classified into four MYB classes in both orchids: MYB-related (MYBR), R2R3-MYB, 3R-MYB and atypical MYB proteins. The MYBR proteins in both orchids were classified into five subfamilies and 12 genes were strongly up-regulated in response to cold stress in D. officinale. The R2R3-MYB proteins were both divided into 31 clades in P. equestris and D. officinale. Among these clades, nine contained MYB TFs related to secondary cell wall biosynthesis or testa mucilage biosynthesis in Arabidopsis thaliana. In D. officinale, 10 candidate genes showed an expression pattern corresponding to changes in the WSP content. Overexpression of one of these candidate genes (DoMYB75) in A. thaliana increased seed WSP content by about 14%. This study provides information about MYB genes in two orchids that will further help to understand the transcriptional regulation of WSP biosynthesis in these orchids as well as other plant species.


Subject(s)
Orchidaceae/growth & development , Polysaccharides/biosynthesis , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Wall/metabolism , Cold-Shock Response , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Multigene Family , Orchidaceae/classification , Orchidaceae/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Polysaccharides/chemistry , Solubility , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...