Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Comput Biol Med ; 172: 108243, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484694

ABSTRACT

OBJECTIVE: This study aimed to develop and evaluate a machine learning model utilizing non-invasive clinical parameters for the classification of endometrial non-benign lesions, specifically atypical hyperplasia (AH) and endometrioid carcinoma (EC), in postmenopausal women. METHODS: Our study collected clinical parameters from a cohort of 999 patients with postmenopausal endometrial lesions and conducted preprocessing to identify 57 relevant characteristics from these irregular clinical data. To predict the presence of postmenopausal endometrial non-benign lesions, including atypical hyperplasia and endometrial cancer, we employed various models such as eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), as well as two ensemble models. Additionally, a test set was performed on an independent dataset consisting of 152 patients. The performance evaluation of all models was based on metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and F1 score. RESULTS: The RF model demonstrated superior recognition capabilities for patients with non-benign lesions compared to other models. In the test set, it attained a sensitivity of 88.1% and an AUC of 0.93, surpassing all alternative models evaluated in this study. Furthermore, we have integrated this model into our hospital's Clinical Decision Support System (CDSS) and implemented it within the outpatient electronic medical record system to continuously validate and optimize its performance. CONCLUSIONS: We have trained a model and deployed a system with high discriminatory power that may provide a novel approach to identify patients at higher risk of postmenopausal endometrial non-benign lesions who may benefit from more tailored screening and clinical intervention.


Subject(s)
Decision Support Systems, Clinical , Postmenopause , Humans , Female , Hyperplasia , Benchmarking , Machine Learning
2.
J Mol Cell Cardiol ; 186: 57-70, 2024 01.
Article in English | MEDLINE | ID: mdl-37984156

ABSTRACT

BACKGROUND: Macrophage-derived foam cells are a hallmark of atherosclerosis. Scavenger receptors, including lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (OLR-1), are the principal receptors responsible for the uptake and modification of LDL, facilitating macrophage lipid load and the uptake of oxidized LDL by arterial wall cells. Krüppel-like factor 15 (KLF15) is a transcription factor that regulates the expression of genes by binding to the promoter during transcription. Therefore, this study aimed to investigate the precise role of macrophage KLF15 in atherogenesis. METHODS: We used two murine models of atherosclerosis: mice injected with an adeno-associated virus (AAV) encoding the Asp374-to-Tyr mutant version of human PCSK9, followed by 12 weeks on a high-fat diet (HFD), and ApoE-/-- mice on a HFD. We subsequently injected mice with AAV-KLF15 and AAV-LacZ to assess the role of KLF15 in the development of atherosclerosis in vivo. Oil Red O, H&E, and Masson's trichome staining were used to evaluate atherosclerotic lesions. Western blots and RT-qPCR were used to assess protein and mRNA levels, respectively. RESULTS: We determined that KLF15 expression was downregulated during atherosclerosis formation, and KLF15 overexpression prevented atherosclerosis progression. KLF15 expression levels did not affect body weight or serum lipid levels in mice. However, KLF15 overexpression in macrophages prevented foam cell formation by reducing OLR-1-meditated lipid uptake. KLF15 directly targeted and transcriptionally downregulated OLR-1 levels. Restoration of OLR-1 reversed the beneficial effects of KLF15 in atherosclerosis. CONCLUSION: Macrophage KLF15 transcriptionally downregulated OLR-1 expression to reduce lipid uptake, thereby preventing foam cell formation and atherosclerosis. Thus, our results suggest that KLF15 is a potential therapeutic target for atherosclerosis.


Subject(s)
Atherosclerosis , Foam Cells , Humans , Mice , Animals , Foam Cells/metabolism , Proprotein Convertase 9/metabolism , Macrophages/metabolism , Atherosclerosis/pathology , Lipoproteins, LDL/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism
3.
Carbohydr Polym ; 326: 121591, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142068

ABSTRACT

A novel polysaccharide (GSPA-0.3) was isolated and purified from the root of cultivated Panax ginseng C. A. Meyer, and its structure, adjuvant activities, and mechanisms for inducing the maturation of mouse dendritic 2.4 cells (DC2.4) were extensively studied. Fraction GSPA-0.3, mainly composed by the galacturonic acid, galactose, arabinose, glucose, rhamnose, mannose, and xylose, had a molecular weight of 62,722 Da. The main chain of GSPA-0.3 was composed of →3)-α-L-Rhap-(1→, →4)-α-D-GalpA-(1→, and →3, 4)-α-D-GalpA-(1→. Branched chains comprised α-L-Araf-(1→3, 5)-α-L-Araf-(1→5)-α-L-Araf-(1→, α-D-Glcp-(1→6)-α-D-Glcp-(1→6)-α-D-Glcp-(1→, ß-D-Galp-(1→4)-ß-D-Galp-(1→4)-ß-D-Galp-(1→, and α-D-GalpA-(1→ units connected to the C3 position of →3, 4)-α-D-GalpA-(1→. In vivo, GSPA-0.3 was found to stimulate the production of IgG, IgG1, and IgG2a; increase the splenocyte proliferation index; and promote the expression of GATA-3, T-bet, IFN-γ, and IL-4 in H1N1 vaccine-immunized mice. Moreover, GSPA-0.3 significantly increased the levels of neutralizing antibodies in the mice, and its adjuvant activity was found to be superior to aluminum adjuvant (Alum adjuvant). Mechanistic investigations showed that GSPA-0.3 activated the TLR4-dependent pathway by upregulating the expressions of TLR4, MyD88, TRAF-6, and NF-κB proteins and gens. The results presented herein suggested that GSPA-0.3 could significantly promote the efficacy of the H1N1 vaccine by modulating Th1/Th2 response via the TLR4-MyD88-NF-κB signaling pathway.


Subject(s)
Influenza A Virus, H1N1 Subtype , Panax , Vaccines , Mice , Animals , Panax/chemistry , Myeloid Differentiation Factor 88 , NF-kappa B , Toll-Like Receptor 4 , Polysaccharides/chemistry , Adjuvants, Immunologic/pharmacology
4.
Neurobiol Dis ; 188: 106346, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37931884

ABSTRACT

Sprouting of mossy fibers, one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy, exhibits several uncommon axonal growth features and has been considered a paradigmatic example of circuit plasticity that occurs in the adult brain. Clarifying the mechanisms responsible may provide new insight into epileptogenesis as well as axon misguidance in the central nervous system. Methyl-CpG-binding protein 2 (MeCP2) binds to methylated genomic DNA to regulate a range of physiological functions implicated in neuronal development and adult synaptic plasticity. However, exploring the potential role of MeCP2 in the documented misguidance of axons in the dentate gyrus has not yet been attempted. In this study, a status epilepticus-induced decrease of neuronal MeCP2 was observed in the dentate gyrus (DG). An essential regulatory role of MeCP2 in the development of functional mossy fiber sprouting (MFS) was confirmed through stereotaxic injection of a recombinant adeno-associated virus (AAV) to up- or down-regulate MeCP2 in the dentate neurons. Chromatin immunoprecipitation sequencing (ChIP-seq) was performed to identify the binding profile of native MeCP2 using micro-dissected dentate tissues. In both dentate tissues and HT22 cell lines, we demonstrated that MeCP2 could act as a transcription repressor on miR-682 with the involvement of the DNA methylation mechanism. Further, we found that miR-682 could bind to mRNA of phosphatase and tensin homolog (PTEN) in a sequence specific manner, thus leading to the suppression of PTEN and excessive activation of mTOR. This study therefore presents a novel epigenetic mechanism by identifying MeCP2/miR-682/PTEN/mTOR as an essential signal pathway in regulating the formation of MFS in the temporal lobe epileptic (TLE) mice. SIGNIFICANCE STATEMENT: Understanding the mechanisms that regulate axon guidance is important for a better comprehension of neural disorders. Sprouting of mossy fibers, one of the most consistent findings in patients with mesial temporal lobe epilepsy, has been considered a paradigmatic example of circuit plasticity in the adult brain. Although abnormal regulation of DNA methylation has been observed in both experimental rodents and humans with epilepsy, the potential role of DNA methylation in this well-documented example of sprouting of dentate axon remains elusive. This study demonstrates an essential role of methyl-CpG-binding protein 2 in the formation of mossy fiber sprouting. The underlying signal pathway has been also identified. The data hence provide new insight into epileptogenesis as well as axon misguidance in the central nervous system.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , MicroRNAs , Animals , Humans , Mice , Dentate Gyrus/metabolism , Epilepsy, Temporal Lobe/metabolism , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , MicroRNAs/metabolism , Mossy Fibers, Hippocampal , TOR Serine-Threonine Kinases/metabolism
5.
ACS Omega ; 8(34): 30929-30938, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37663487

ABSTRACT

Aluminum-based flameless ration heaters (AFRHs) are heating elements in food packaging. Water is used to activate AFRHs. The material properties of each region of AFRHs were determined by X-ray diffraction, scanning electron microscopy, and hydrogen and heat generation. The results show that the internal cross-section shows stratification with hydrogen and heat production capacities of 105.2 ± 9.7 mL/g and 1435.0 ± 30.3 J/g for the outer layer, 27.1 ± 4.4 mL/g and 80.4 ± 3.1 J/g for the inner layer, and 1.1 ± 0.01 mL/g and 1.2 ± 0.05 J/g for the middle layer, respectively. According to the correspondence between aluminum and hydrogen in the aluminum-water reaction relationship, the reaction efficiency of the outer layer and the inner layer is as low as 64 and 80%, which is an indication of low reaction efficiency. To analyze the reasons for low reaction efficiency, a pore channel model of 3.5 nm tricalcium aluminate (C3A) was developed using molecular dynamics (MD) to reveal the adsorption behavior of the activator in the pore channel. The results show that the activator is subject to solid surface adsorption in the pore channel with a low diffusion coefficient. Oxygen atoms on the surface adsorb hydrogen atoms to form hydrogen bonds and sodium ions to form ionic bonds with calcium ions. This increases the retention time of the activator on the surface. The MD results explain the low reaction efficiency of AFRHs at the microscopic scale. Moreover, it provides ideas and a basis for the optimization of AFRHs.

6.
J Chem Neuroanat ; 132: 102325, 2023 10.
Article in English | MEDLINE | ID: mdl-37595695

ABSTRACT

Anesthetics-induced disruption of dentate neurogenesis in the young brain is strongly suggested to contribute to delayed neurocognitive deficit. In postnatal rodents, the neurogenesis of the dentate gyrus (DG) is sequentially derived from the secondary dentate matrix, tertiary dentate matrix and subgranular zone (SGZ). However, the effects of anesthetics on the dentate neurogenesis derived from specific sites are poorly understood. To trace the new cells generated from the postnatal secondary dentate matrix, peak stage of the tertiary dentate matrix and early stage of the SGZ after isoflurane exposure, mice at postnatal day 1 (P1), P7 and P31 were injected with BrdU at 12 h before the exposure. We found that isoflurane exposure significantly reduced the numbers of proliferating cells (1 day old), immature granule cells (21 days old) or mature granule cells (42 days old) derived from the peak stage of the tertiary dentate matrix and postnatal secondary dentate matrix, but not from the SGZ. Quantitative assessment of BrdU-/BrdU+NeuN-positive cells and cleaved caspase-3 level in the DG indicated that the reduction was correlated with cell loss rather than neuronal differentiation. Mechanistically, we demonstrated that the PI3K/Akt/GSK-3ß pathway enriched by mRNA-sequencing is a requirement for the isoflurane-induced loss of 1-day-old proliferating cells generated from the tertiary dentate matrix. In addition, this study demonstrated that P1 and P7 mice, but not P31 mice exposure to isoflurane resulted in subsequent deficits in performance of the tasks of the Morris Water Maze.


Subject(s)
Isoflurane , Animals , Mice , Isoflurane/pharmacology , Bromodeoxyuridine , Glycogen Synthase Kinase 3 beta , Phosphatidylinositol 3-Kinases , Neurogenesis
7.
Org Biomol Chem ; 21(24): 4999-5013, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37264805

ABSTRACT

In this study, we developed an organocatalyst-controlled site-selectivity switchable Friedel-Crafts reaction of 1-naphthols and 2,3-dioxopyrrolidines. The o-selective Friedel-Crafts reaction was achieved with chiral tertiary amines, while the p-selective Friedel-Crafts reaction was accomplished with Brønsted acids or Lewis acids. With this protocol, a range of functionalized polycyclic 2-pyrrolidinone derivatives were prepared. Moreover, theoretical mechanistic investigations provided insights into the site-selectivity reaction pathway and the origin of chiral induction for the o-selective Friedel-Crafts reaction.

8.
Front Immunol ; 14: 1136169, 2023.
Article in English | MEDLINE | ID: mdl-36969249

ABSTRACT

Background: Multiple clinical studies have indicated that the gut microbiota influences the effects of immune checkpoint blockade (ICB) therapy comprising PD-1/PD-L1 inhibitors, but the causal relationship is unclear. Because of numerous confounders, many microbes related to PD-1/PD-L1 have not been identified. This study aimed to determine the causal relationship between the microbiota and PD-1/PD-L1 and identify possible biomarkers for ICB therapy. Method: We used bidirectional two-sample Mendelian randomization with two different thresholds to explore the potential causal relationship between the microbiota and PD-1/PD-L1 and species-level microbiota GWAS to verify the result. Result: In the primary forward analysis, genus_Holdemanella showed a negative correlation with PD-1 [ßIVW = -0.25; 95% CI (-0.43 to -0.07); PFDR = 0.028] and genus_Prevotella9 showed a positive correlation with PD-1 [ßIVW = 0.2; 95% CI (0.1 to 0.4); PFDR = 0.027]; order_Rhodospirillales [ßIVW = 0.2; 95% CI (0.1 to 0.4); PFDR = 0.044], family_Rhodospirillaceae [ßIVW = 0.2; 95% CI (0 to 0.4); PFDR = 0.032], genus_Ruminococcaceae_UCG005 [ßIVW = 0.29; 95% CI (0.08 to 0.5); PFDR = 0.028], genus_Ruminococcus_gnavus_group [ßIVW = 0.22; 95% CI (0.05 to 0.4); PFDR = 0.029], and genus_Coprococcus_2 [ßIVW = 0.4; 95% CI (0.1 to 0.6); PFDR = 0.018] were positively correlated with PD-L1; and phylum_Firmicutes [ßIVW = -0.3; 95% CI (-0.4 to -0.1); PFDR = 0.031], family_ClostridialesvadinBB60group [ßIVW = -0.31; 95% CI (-0.5 to -0.11), PFDR = 0.008], family_Ruminococcaceae [ßIVW = -0.33; 95% CI (-0.58 to -0.07); PFDR = 0.049], and genus_Ruminococcaceae_UCG014 [ßIVW = -0.35; 95% CI (-0.57 to -0.13); PFDR = 0.006] were negatively correlated with PD-L1. The one significant species in further analysis was species_Parabacteroides_unclassified [ßIVW = 0.2; 95% CI (0-0.4); PFDR = 0.029]. Heterogeneity (P > 0.05) and pleiotropy (P > 0.05) analyses confirmed the robustness of the MR results.


Subject(s)
B7-H1 Antigen , Gastrointestinal Microbiome , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , Mendelian Randomization Analysis , Ligands , Apoptosis
9.
Adv Sci (Weinh) ; 10(5): e2206290, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36504335

ABSTRACT

Exploring high-safety but convenient encryption and decryption technologies to combat threats of information leakage is urgently needed but remains a great challenge. Here, a synergistically time- and temperature-resolved information coding/decoding solution based on functional photonic inks is demonstrated. Encrypted messages can be stored into multiple channels with dynamic-color patterns, and information decryption is only enabled at appointed temperature and time points. Notably, the ink can be easily processed into quick-response codes and multipixel plates. With high transparency and responsive color variations controlled by ink compositions and ambient temperatures, advanced 3D stacking multichannel coding and Morse coding techniques can be applied for multi-information storage, complex anticounterfeiting, and information interference. This study paves an avenue for the design and development of dynamic photonic inks and complex encryption technologies for high-end anticounterfeiting applications.

10.
Meat Sci ; 196: 109043, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36413864

ABSTRACT

The combined effects of lactic acid-ultrasound-papain on yak meat tenderization were investigated, and its tenderization mechanism elucidated. The optimal condition for combined tenderization was obtained with 0.03% lactic acid, ultrasound for 30 mins, and 200 U/g of papain. When compared with the untreated yak meat, the cutting force and the cooking loss of the tenderized yak meat were decreased by 62.16% and 31.25%, respectively, while the myofibrillar fragmentation index increasing 4.3 times. After the combined tenderization, it was observed a loose arrangement of muscle with larger gaps and cavities. The random-coil content of myofibrillar protein increased to 48.3%, while α-helix decreased to 14.4%, indicating that the myofibrillar protein underwent some unfolding and stretching. These results demonstrated that this combined treatment improved the tenderization of yak meat by disrupting muscle integrity, increasing its water-holding capacity, denaturing myofibrillar protein, and changing its spatial structure. The combined process using lactic acid-ultrasound-papain showed some potential to improve meat texture.


Subject(s)
Lactic Acid , Papain , Cattle , Animals , Meat , Ultrasonography , Cooking
11.
Food Chem ; 404(Pt A): 134567, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36252375

ABSTRACT

Phosvitin has excellent calcium binding capacity, related to its phosphopeptides. The phosphopeptides may be used as functional ingredients for improving calcium bioavailability, but the calcium-binding mechanism is unclear. In this study, a novel phosvitin phosphorylated pentapeptide (Glu-Asp-Asp-pSer-pSer, EDDpSpS) was selected to prepare an EDDpSpS calcium complex (EDDpSpS-Ca), and the calcium-binding mechanism and bioavailability investigated. The calcium-binding capacity of EDDpSpS was up to 468 ± 152.80 mg/g. Calcium ions prompted the folding of the EDDpSpS structure to form spherical nanoparticles. The calcium binding sites of EDDpSpS involved peptide bonds, carboxyl, amino, and phosphate groups. Molecular forces involved in these interactions were electrostatic in nature. Moreover, EDDpSpS-Ca had excellent bioavailability when compared to CaCO3, calcium lactate, and d-calcium gluconate. This study revealed the calcium-binding mechanism of phosvitin phosphopeptide, and suggested that EDDpSpS-Ca has the potential to be a novel, efficient, and promising calcium supplement.


Subject(s)
Phosphopeptides , Phosvitin , Phosvitin/chemistry , Phosphopeptides/chemistry , Calcium/chemistry , Biological Availability , Calcium, Dietary
12.
Bioconjug Chem ; 34(1): 111-123, 2023 01 18.
Article in English | MEDLINE | ID: mdl-35856656

ABSTRACT

The specificity and predictability of hybridization make oligonucleotides a powerful platform to program assemblies and networks with logic-gated responses, an area of research which has grown into a field of its own. While the field has capitalized on the commercial availability of DNA oligomers with its four canonical nucleobases, there are opportunities to extend the capabilities of the hardware with unnatural nucleobases and other backbones. This Topical Review highlights nucleobases that favor hybridizations that are empowering for assemblies and networks as well as two chiral XNAs than enable orthogonal hybridization networks.


Subject(s)
DNA , Oligonucleotides , Nucleic Acid Hybridization
13.
Curr Oncol ; 29(11): 8456-8467, 2022 11 06.
Article in English | MEDLINE | ID: mdl-36354726

ABSTRACT

PURPOSE: The incidence of early-onset CRC is increasing. However, the effect of age of onset on the long-term outcome of colorectal cancer liver metastasis (CRLM) remains unclear. This study aimed to evaluate the association between the age of onset and the oncological outcome of CRLM patients and to investigate whether the prognostic role of RAS mutation is altered with age. METHODS: We retrospectively investigated consecutive patients at our institution who underwent initial liver resection between 2006 and 2020. The inverse probability of treatment weighting (IPTW) method was used to balance the confounders among early- (≤45 years; EOCRLM), intermediate- (46-70 years; IOCRLM), and late-onset (>70 years; LOCRLM) groups. The prognostic role of RAS was assessed based on age group. RESULTS: A total of 1189 patients were enrolled: 162 in the EOCRLM group, 930 in the IOCRLM group, and 97 in the LOCRLM group. No difference in disease-free survival (DFS) was found between the three groups. However, EOCRLM were more likely to develop extrahepatic and extrapulmonary metastasis and had significantly lower five-year OS rates than IOCRLM. After IPTW, EOCRLM remained a negative prognostic predictor. RAS mutations were significantly associated with worse survival than wild-type RAS in EOCRLM and IOCRLM. However, RAS mutation did not predict the prognosis of patients with LOCRLM. CONCLUSIONS: Patients with EOCRLM had a significantly lower OS than IOCRLM patients and age influences the prognostic power of RAS status. These findings may be helpful for doctors to guide the clinical treatments and develop follow-up strategies.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Humans , Hepatectomy , Retrospective Studies , Age of Onset , Colorectal Neoplasms/genetics , Colorectal Neoplasms/surgery , Colorectal Neoplasms/pathology , Survival Rate , Mutation , Liver Neoplasms/genetics , Liver Neoplasms/surgery , Liver Neoplasms/secondary
14.
Molecules ; 27(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36235038

ABSTRACT

Polysorbates (PS 20 and PS 80) are the most widely used surfactants in biopharmaceutical formulations to protect proteins from denaturation, aggregation, and surface adsorption. To date, around 70% of marketed therapeutic antibodies contain either PS 20 or PS 80 in their formulations. However, polysorbates are chemically diverse mixtures, which are prone to degradation by oxidation and hydrolysis to produce peroxides and fatty acids, which, in turn, induce protein oxidation, aggregation, and insoluble particle formation. These will negatively impact protein quality and stability. Thus, polysorbate degradation has emerged as one of the major challenges in the development and commercialization of therapeutic protein products. KLEPTOSE® HPßCD (hydroxypropyl beta-cyclodextrin), a new multifunctional excipient, has been shown to provide protein stabilization functions in biopharmaceutical downstream processes and in their final formulations. This study aims to evaluate HPßCD, a new molecule of its class, against polysorbates as a stabilizer in biologics formulations. In this study, the chemical stability of KLEPTOSE® HPßCDs is compared with polysorbates (20 and 80) under various stress conditions. When subjected to heat stress, HPßCDs show little change in product recovery (90.7-100.7% recovery for different HPßCDs), while polysorbates 20 and 80 show significant degradation, with only 11.5% and 7.3% undegraded product remaining, respectively. When subjected to other chemical stressors, namely, autoclave, light, and oxidative stresses, HPßCD remains almost stable, while polysorbates show more severe degradation, with 95.5% to 98.8% remaining for polysorbate 20 and 85.5% to 97.4% remaining for polysorbate 80. Further, profiling characterization and degradation analysis reveal that chemical structures of HPßCDs remain intact, while polysorbates undergo significant hydrolytic degradation and oxidation. Lastly, the physicochemical stability of monoclonal antibodies in formulations is investigated. When subjected to light stress, adalimumab, as a model mAb, formulated in the presence of HPßCD, shows a significant decrease in protein aggregation, and superior monomer and total protein recovery compared to PS 80-containing formulations. HPßCD also reduces both agitation and thermal stress-induced protein aggregation and prevents subvisible particle formation compared to PS 80.


Subject(s)
Antineoplastic Agents, Immunological , Biological Products , beta-Cyclodextrins , 2-Hydroxypropyl-beta-cyclodextrin , Adalimumab , Antibodies, Monoclonal/chemistry , Excipients/chemistry , Fatty Acids/chemistry , Peroxides , Polysorbates/chemistry , Protein Aggregates , Surface-Active Agents/chemistry , beta-Cyclodextrins/chemistry
15.
ACS Omega ; 7(29): 25353-25365, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35910146

ABSTRACT

The dynamic effect of shaped charge blasting and its application in coal seam permeability enhancement have been investigated. Comparative experiments of shaped charge blasting and conventional blasting to fracture the concrete are carried out. Then, the propagation characteristics of explosion stress waves under shaped charge blasting and conventional blasting are analyzed by ANSYS/LS-DYNA. Finally, the fracture mechanical model of shaped charge blasting is established. The experimental results show that the width of the four main cracks formed after conventional blasting is 0.3 cm, while the width of the cracks in the energy accumulation direction after shaped charge blasting is 1.1 cm and the width of that in the vertical energy accumulation direction is 0.4 cm. The numerical simulation results show that the crushing area after shaped charge blasting is "dumbbell type", and the area is smaller than that of conventional blasting. However, the cracking area is "spindle type", and the development of the fracture degree is better than that of conventional blasting. In addition, shaped charge blasting is used to improve the permeability of coal seams. The results show that shaped charge blasting effectively improves the permeability and gas extraction rate of coal seams.

16.
Polymers (Basel) ; 14(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35335457

ABSTRACT

This study explored the preliminary structural characteristics and in vivo anti-tumor activity of an acidic water-soluble polysaccharide (BCP) separated purified from Bupleurum chinense DC root. The preliminary structural characterization of BCP was established using UV, HPGPC, FT-IR, IC, NMR, SEM, and Congo red. The results showed BCP as an acidic polysaccharide with an average molecular weight of 2.01 × 103 kDa. Furthermore, we showed that BCP consists of rhamnose, arabinose, galactose, glucose, and galacturonic acid (with a molar ratio of 0.063:0.788:0.841:1:0.196) in both α- and ß-type configurations. Using the H22 tumor-bearing mouse model, we assessed the anti-tumor activity of BCP in vivo. The results revealed the inhibitory effects of BCP on H22 tumor growth and the protective actions against tissue damage of thymus and spleen in mice. In addition, the JC-1 FITC-AnnexinV/PI staining and cell cycle analysis have collectively shown that BCP is sufficient to induce apoptosis and of H22 hepatocarcinoma cells in a dose-dependent manner. The inhibitory effect of BCP on tumor growth was likely attributable to the S phase arrest. Overall, our study presented significant anti-liver cancer profiles of BCP and its promising therapeutic potential as a safe and effective anti-tumor natural agent.

17.
Hortic Res ; 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35039844

ABSTRACT

Cuticular wax on plant aerial surfaces plays a vital role in the defense against various stresses, and the genes related to wax metabolism have been well documented in several model plants. However, there is very limited research on the key enzymes and transcription factors (TFs) associated with carbon chain distribution and wax biosynthesis in citrus fruit. In this study, an analysis of wax metabolites indicated that even carbon-chain (C24-C28) metabolites are the dominant wax components in citrus fruit, and a 3-ketoacyl-CoA synthase (KCS) family gene (CsKCS20) plays an important role in the carbon chain distribution during wax biosynthesis in a wax-deficient mutant (MT). Expression of CsKCS20 in yeast indicated that CsKCS20 can catalyze the biosynthesis of C22 and C24 very-long-chain fatty acids (VLCFAs). In addition, transcriptome and sequence analysis indicated that the differential expression of CsKCS20 between the wild-type (WT) and MT fruit can be partly attributed to the regulation of CsMYB96, which was further confirmed by yeast one-hybrid (Y1H) assays, electrophoretic mobility shift assays (EMSAs) and dual luciferase assays. The functions of CsMYB96 and CsKCS20 in wax biosynthesis were further validated by heterologous expression in Arabidopsis. In summary, this study elucidates the important roles of CsKCS20 and CsMYB96 in regulating VLCFA elongation and cuticular wax biosynthesis, which provides new directions for the improvement of citrus fruit wax quality in genetic breeding programs.

18.
J Pharm Sci ; 111(3): 743-751, 2022 03.
Article in English | MEDLINE | ID: mdl-34600939

ABSTRACT

The occurrence of visible particles over the shelf-life of biopharmaceuticals is considered a potential safety risk for parenteral administration. In many cases, particle formation resulted from the accumulation of fatty acids released by the enzymatic hydrolysis of the polysorbate surfactant by co-purified host cell proteins. However, particle formation can occur before the accumulated fatty acids exceed their expected solubility limit. This early onset of particle formation is driven by nucleation phenomena e.g. the presence of metal cations that promote the formation and growth of fatty acid particles. To further characterize and understand this phenomenon, we assessed the potential of different metal cations to induce fatty acid particle formation using a dynamic light scattering assay. We demonstrated that the presence of trace amounts of multivalent cations, in particular trivalent cations such as aluminum and iron, may act as nucleation seed in the process of particle formation. Finally, we developed a mitigation strategy for metal-induced fatty acid particles that deploys a chelator to reduce the risk of particle formation in biopharmaceutical formulations.


Subject(s)
Biological Products , Polysorbates , Chemistry, Pharmaceutical , Fatty Acids , Hydrolysis , Surface-Active Agents
19.
Exp Neurol ; 347: 113918, 2022 01.
Article in English | MEDLINE | ID: mdl-34748756

ABSTRACT

In temporal lobe epilepsy (TLE), abnormal axon guidance and synapse formation lead to sprouting of mossy fibers in the hippocampus, which is one of the most consistent pathological findings in patients and animal models with TLE. Glypican 4 (Gpc4) belongs to the heparan sulfate proteoglycan family, which play an important role in axon guidance and excitatory synapse formation. However, the role of Gpc4 in the development of mossy fibers sprouting (MFS) and its underlying mechanism remain unknown. Using a pilocarpine-induced mice model of epilepsy, we showed that Gpc4 expression was significantly increased in the stratum granulosum of the dentate gyrus at 1 week after status epilepticus (SE). Using Gpc4 overexpression or Gpc4 shRNA lentivirus to regulate the Gpc4 level in the dentate gyrus, increased or decreased levels of netrin-1, SynI, PSD-95, and Timm score were observed in the dentate gyrus, indicating a crucial role of Gpc4 in modulating the development of functional MFS. The observed effects of Gpc4 on MFS were significantly antagonized when mice were treated with L-leucine or rapamycin, an agonist or antagonist of the mammalian target of rapamycin (mTOR) signal, respectively, demonstrating that mTOR pathway is an essential requirement for Gpc4-regulated MFS. Additionally, the attenuated spontaneous recurrent seizures (SRSs) were observed during chronic stage of the disease by suppressing the Gpc4 expression after SE. Altogether, our findings demonstrate a novel control of neuronal Gpc4 on the development of MFS through the mTOR pathway after pilocarpine-induced SE. Our results also strongly suggest that Gpc4 may serve as a promising target for antiepileptic studies.


Subject(s)
Glypicans/biosynthesis , Mossy Fibers, Hippocampal/metabolism , Pilocarpine/toxicity , Signal Transduction/physiology , Status Epilepticus/metabolism , TOR Serine-Threonine Kinases/biosynthesis , Animals , Cells, Cultured , Glypicans/antagonists & inhibitors , Male , Mice , Mossy Fibers, Hippocampal/drug effects , Muscarinic Agonists/toxicity , Signal Transduction/drug effects , Status Epilepticus/chemically induced , TOR Serine-Threonine Kinases/antagonists & inhibitors
20.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(12): 1721-1728, 2022 Dec 28.
Article in English, Chinese | MEDLINE | ID: mdl-36748383

ABSTRACT

Mitogen-activated protein kinase (MAPK) cascade system is one of the highly conserved signal systems in eukaryotic cells, which participates in the regulation of many biological processes. Under the stimulation of different signals (such as cytokines, neurotransmitters, and hormones), MAPK cascade activates downstream targets and controls a variety of cellular processes, including growth, immunity, inflammation, and stress response. In different cells, the effects of MAPK cascade on cells vary with the stimuli and the duration of stimulation. MAPK cascade induces Th differentiation and participates in T cell receptor signal pathway and B cell receptor signal pathway. MAPK cascades regulate various cellular activities related to the occurrence and development of cancer. A thorough and systematic understanding of the specific regulatory effects of MAPK cascade on various cellular processes will provide theoretical guidance for treating various diseases.


Subject(s)
MAP Kinase Signaling System , Neoplasms , Humans , Signal Transduction , Cell Cycle , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL
...