Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(13): 16132-16144, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38511296

ABSTRACT

The main impediment to the development of zinc-air batteries is the sluggish kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Transition metal N-doped carbon catalysts offer a promising alternative to noble metal catalysts, with metal-organic framework (MOF)-derived carbon material catalysts being particularly noteworthy. Here, we synthesized MxP-Z-C carbon catalysts by combining two-dimensional (2D) metal porphyrin-based MOFs (MxPMFs, x = Fe, Co, Ni, Mn) and three-dimensional zeolitic imidazole framework-8 (ZIF-8) through electrostatic interaction, followed by carbonization. ZIF-8 was inserted between the layers of MxPMFs to prevent its Π-Π stacking, allowing the active sites to become fully exposed. MxP-Z-C demonstrated an impressive catalytic activity for both the ORR and the OER reactions. Among them, FeP-Z-C showed the best catalytic activity. The half-wave potential for ORR was 0.92 V (vs the reversible hydrogen electrode (RHE)), while the overpotential for the OER was 290 mV. In addition, the zinc-air battery assembled by FeP-Z-C exhibited high power density (133.14 mW cm-2) and significant specific capacity (816 mAh gZn-1), indicating considerable potential as a bifunctional catalyst for electronic devices.

2.
Phys Chem Chem Phys ; 25(40): 27756-27765, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37814579

ABSTRACT

The substitution of oxygen with chalcogen in carbonyl group(s) of canonical nucleobases gives an impressive triplet generation, enabling their promising applications in medicine and other emerging techniques. The excited-state relaxation S2(ππ*) → S1(nπ*) → T1(ππ*) has been considered the preferred path for triplet generation in these nucleobase derivatives. Here, we demonstrate enhanced quantum efficiency of direct intersystem crossing from S2 to triplet manifold upon substitution with heavier chalcogen elements. The excited-state relaxation dynamics of sulfur/selenium substituted guanines in a vacuum is investigated using a combination of static quantum chemical calculations and on-the-fly excited-state molecular dynamics simulations. We find that in sulfur-substitution the S2 state predominantly decays to the S1 state, while upon selenium-substitution the S2 state deactivation leads to simultaneous population of the S1 and T2,3 states in the same time scale and multi-state quasi-degeneracy region S2/S1/T2,3. Interestingly, the ultrafast deactivation of the spectroscopic S3 state of both studied molecules to the S1 state occurs through a successive S3 → S2 → S1 path involving a multi-state quasi-degeneracy S3/S2/S1. The populated S1 and T2 states will cross the lowest triplet state, and the S1 → T intersystem crossing happens in a multi-state quasi-degeneracy region S1/T2,3/T1 and is accelerated by selenium-substitution. The present study reveals the influence of both the chalcogen substitution element and initial spectroscopic state on the excited-state relaxation mechanism of nucleobase photosensitizers and also highlights the important role of multi-state quasi-degeneracy in mediating the complex relaxation process. These theoretical results provide additional insights into the intrinsic photophysics of nucleobase-based photosensitizers and are helpful for designing novel photo-sensitizers for real applications.

3.
Nanotechnology ; 34(49)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37673043

ABSTRACT

Exploring highly active oxygen reduction electrocatalysts with low precious metals content is imperative but remains a considerable challenge. Herein, a series of heterobimetallic multi-walled carbon nanotubes (MWCNTs) electrocatalysts based on metal complexes are presented. These electrocatalysts feature diverse transition metals (M=Mn, Fe, Co, Ni) 5,15-bromophenyl-10, 20-methoxyphenyl porphyrin (MBMP) and tetrakis(triphenylphosphine)palladium (0) (Pd[P(Ph3)4]) anchored non-covalently on its surface. The resulting NiBMP-based MWCNTs with Pd[P(Ph3)4] (PdNiN4/MWCNTs) display outstanding electrocatalytic oxygen reduction activity (onset potential, 0.941 V; half wave potential, 0.830 V) and robust long-term durability in alkaline electrolyte. While in neutral condition, the MnBMP-based MWCNTs with Pd[P(Ph3)4] (PdMnN4/MWCNTs) are the most active heterobimetallic ORR catalyst and produce ultra-low concentration hydrogen peroxide (H2O2yield, 1.2%-1.3%). Synergistically tuning the ORR electrocatalytic activity and electron transfer pathway is achieved by the formation of NiBMP/MnBMP-Pd[P(Ph3)4] active sites. This work indicates such metalloporphyrin-Pd[P(Ph3)4] active sites on MWCNTs have significantly positive influence on electrocatalytic ORR systems and provides facile and mild strategy for designing highly efficient ORR electrocatalysts with ultra-low loading precious metal.

4.
Inorg Chem ; 59(4): 2406-2412, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32030979

ABSTRACT

Transition-metal sulfide is a good kind of material for supercapacitors because of the large capacity. Nevertheless, the low electroconductivity, slow reaction kinetics, and limited active centers lead to poor electrochemical properties such as long-term cycling stability. In the present work, nano nickel metal-organic framework (Ni-MOF) was constructed by using the nitrogen-rich functional group ligand 2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazin and compounded with carbon nanotubes (CNTs) to prepare Ni-MOF/CNTs composite, which was used as a precursor to prepare the MOFs-derived NC/Ni-Ni3S4/CNTs composite with the Ni3S4 uniformly distributed in the three-dimensional (3D) conductive network. The rich nitrogen doping and 3D conductive network constructed by CNTs improved the conductivity, prompted the rapid entry of electrolyte, and improved the reaction kinetics of NC/Ni-Ni3S4/CNTs, thus obtained excellent specific capacitance, coulomb efficiency, and cyclic stability. The specific capacitance of NC/Ni-Ni3S4/CNTs is 1489.9 F/g at 1 A/g, which remains 800 F/g at 10 A/g, showing good rate performance.

5.
J Colloid Interface Sci ; 565: 315-325, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31978794

ABSTRACT

The carbon layer with good electrical conductivity and outstanding mechanical stability are essential in designing high-performance silicon/carbon (Si/C) anodes to replace the commercial graphite in lithium-ion batteries (LIBs). In terms of solving the two inherent defects of poor conductivity and big volume change of silicon, we fabricate a spongy carbon matrix derived from ZIF-8 to anchor saclike silicon synthesized by molten salt magnesiothermic reduction method. This spongy matrix can anchor saclike silicon to provide a stable reaction interface and support fast electronic transmission. At the same time, buffer space in saclike Si nanoparticles and spongy matrix can synergistically accommodate the volume change of Si to maintain the integrity of the electrode. The resulting composite with a high Si content of 77.58% exhibits good capacities of 1448 mAh g-1 at 2 A g-1 and 848 mAh g-1 at 4 A g-1 after 500 cycles. High initial coulombic efficiency of 84% at 0.2 A g-1 is also exhibited in the first three activation cycles. Therefore, this novel multifunctional N-doped spongy matrix can supply multifaceted benefits in accommodation of volumetric variation, enhancement of conductivity, and integrity of structure during cycling.

6.
Mikrochim Acta ; 186(8): 553, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31327056

ABSTRACT

The published version of this article, unfortunately, contains error. The author found out that Chart 1 image was wrongly incorporated in the online paper.

7.
Mikrochim Acta ; 186(6): 381, 2019 05 27.
Article in English | MEDLINE | ID: mdl-31134407

ABSTRACT

Graphene oxide (GO) was modified with the cobalt(II) and zinc(II) complexes (CoTFPP and ZnTFPP) of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin in order to improve the electrocatalytic activity of GO towards catechol (CC) and hydroquinone (HQ). It is found that the CoTFPP-modified GO on a glassy carbon electrode (GCE) displays the highest electrocatalytic activity. The response to CC (at 0.14 V vs. SCE) is linear in the 1-220 µM concentration range. The response to HQ (at 0.04 V vs. SCE) extends from 1 µM to 200 µM. The sensitivity and detection limits are 10.40 µA∙µM-1∙cm-2 and 0.17 µM for CC, and 8.40 µA∙µM-1∙cm-2 and 0.21 µM for HQ. Experimental results indicate that the Co(II) and Zn(II) ions in the porphyrins positively affect the electron transfer rate in the hybrid materials. The GCE modified with CoTFPP/GO was successfully applied to the simultaneous determination of CC and HQ in spiked samples of tap and lake water. Graphical abstract Schematic presentation of a voltammetric method for simultaneous determination of catechol (CC) and hydroquinone (HQ). It is based on the use of a cobalt (II) fluoroporphyrin (CoTFPP) functionalized graphene oxide (GO) hybrid.

8.
Bioorg Med Chem ; 27(12): 2598-2608, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30992204

ABSTRACT

Water-soluble porphyrins are considered promising drug candidates for photodynamic therapy (PDT). This study investigated the PDT activity of a new water-soluble, anionic porphyrin (1-Zn), which possesses four negative charges. The photodynamic anticancer activity of 1-Zn was investigated by the MTT assay, with mTHPC as a positive control. The cellular distribution was determined by fluorescence microscopy. Holographic and phase contrast images were recorded after 1-Zn treatment with a HoloMonitor™ M3 instrument. The inhibition of A549 cell growth achieved by inducing apoptosis was investigated by flow cytometry and fluorescence microscopy. DNA damage was investigated by the comet assay. The expression of apoptosis-related proteins was also measured by western blot assays. 1-Zn had better phototoxicity against A549 cells than HeLa and HepG2 cancer cells. Interestingly, 1-Zn was clearly located almost entirely in the cell cytoplasmic region/organelles. The late apoptotic population was less than 1.0% at baseline in the untreated and only light-treated cells and increased to 40.5% after 1-Zn treatment and irradiation (P < 0.05). 1-Zn triggered significant ROS generation after irradiation, causing ΔΨm disruption (P < 0.01) and DNA damage. 1-Zn induced A549 cell apoptosis via the mitochondrial apoptosis pathway. In addition, 1-Zn bound in the groove of DNA via an outside binding mode by pi-pi stacking and hydrogen bonding. 1-Zn exhibits good photonuclease activity and might serve as a potential photosensitizer (PS) for lung cancer cells.


Subject(s)
Photosensitizing Agents/chemical synthesis , Porphyrins/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , DNA Damage/drug effects , Humans , Hydrogen Bonding , Light , Membrane Potential, Mitochondrial/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Photochemotherapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Porphyrins/pharmacology , Porphyrins/therapeutic use , Reactive Oxygen Species/metabolism
9.
ACS Appl Mater Interfaces ; 10(11): 9435-9443, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29528216

ABSTRACT

Lithium-sulfur (Li-S) battery is regarded as one of the most promising next-generation efficient energy storage systems because of its ultrahigh theoretical capacity of 1675 mAh/g and energy density of 2600 Wh/kg accompanied by the environmental benignity and abundance from natural sulfur. However, the insulating nature of sulfur and the dissolution of the polysulfides Li2S n (4 ≤ n ≤ 8) seriously restrict its practical application. The metastable small sulfur molecules (S2-4) stored in microporous carbon (pore size of <0.6 nm) as the active materials can avoid the production of the soluble polysulfide and solve the shuttle effect thoroughly. In addition, the conductivity of sulfur can be also improved. However, the preparation of microporous carbon materials with reasonable pore size and unique morphology for efficiently encapsulating S2-4 is still challenging. Herein, three flowerlike microporous nitrogen-doped carbon nanosheets with the pore size of <0.6 nm (namely, FMNCN-800, -900, and -1000) as the cathode materials in Li-S batteries were obtained from temperature-dependent carbonization of the metal-organic framework (MOF), Zn-TDPAT, which was from the simply reflux reaction of N-rich ligand H6TDPAT with Zn(II) salt. Our study showed that the FMNCN-900 from carbonization of Zn-TDPAT at 900 °C has suitable pore volume and nitrogen content, accommodating small S2-4 molecules in its micropores with the mass uptake of about 45%. Meanwhile, the appropriate amount of the nitrogen doping and the unique nanostructure of the flowerlike carbon nanosheet in the FMNCN-900 can effectively support its fast electronic transmission and lithium-ion conduction. The resulting S@FMNCN-900 composite cathode material presents the excellent electrochemical property in the Li-S battery (here the carbonate as electrolytes) with a reversible capacity of about 1220 mAh/g at 0.1C after 200 cycles and even 727 mAh/g at 2C after the long-term cycle of 1000 with only around 0.02% capacity loss per cycle. Obviously, the results indicate that the delicate construction of MOF-derived nitrogen-doped microporous carbon nanosheet is a promising strategy to develop novel electrode material for high-performing Li-S batteries.

10.
ACS Appl Mater Interfaces ; 9(5): 4701-4708, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28094504

ABSTRACT

A robust primitive diamond-type topology 3-D metal-organic framework (MOF) of {[Cd4(hbhdpy)2(bdc)3(DMA)2]·(H2O)4}n (1, DMA = N,N-dimethylacetamide) was constructed from the planar secondary building units of the dinuclear cadmium clusters, Cd2(µ2-O)2, and two linear organic linkers of the new multidentate Schiff base of 4-(2-hydroxy-3-methoxy-benzyli-denehydrazino-carbonyl)-N-pyridin-4-yl-benzamide (Hhbhdpy) through the solvothermal reaction. 1 presents a 2-fold interpenetrating network along with confined narrow channels and rich acylamide groups as well as potential metal open sites for excellent selective CO2 uptake over CH4/N2 and high luminescent response for 2,4,6-trinitrophenol (TNP) in DMA solution under ambient conditions. With 2-amino-1,4-dicarboxy-benzene (H2bdc-NH2) replacing H2bdc, an amine-functionalized MOF of {[Cd4(hbhdpy)2(bdc-NH2)3 (DMA)2]·(H2O)4}n (1-NH2) as an isomorphism of 1, was synthesized under the same reaction conditions. Compared with 1, the corresponding bifunctional features of 1-NH2 is more obvious. To the best of our knowledge, it is the first reported interpenetrating Cd-MOFs with highly sensitive luminescence response for TNP molecules combined with excellent selectivity for CO2/N2 and CO2/CH4.

SELECTION OF CITATIONS
SEARCH DETAIL
...