Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Front Med (Lausanne) ; 11: 1303855, 2024.
Article in English | MEDLINE | ID: mdl-38384412

ABSTRACT

Background: SARS-CoV-2 could trigger multiple immune responses, leading to several autoimmune diseases, including thyroid diseases. Many cases of thyroid diseases caused by COVID-19 infection have been reported. Here, we describe the disease development of patients with autoimmune thyroid disease after COVID-19 infection. Methods: The clinical characteristics, diagnosis and treatment of five different patients with autoimmune thyroid disease after COVID-19 infection were reported. Results: Female patients with primary autoimmune thyroid disease which have been stable for many years were reported. One month after COVID-19 infection, the disease has undergone different evolution. Case 1, a patient with history of long-term stable Hashimoto's thyroiditis, suddenly suffered from Graves disease after COVID-19 infection. Case 2, a patient with history of long-term stable Hashimoto's thyroiditis with thyroid nodules, suddenly suffered from Graves disease after infection. Case 3, a patient with history of long-term stable Graves disease, suddenly suffered from worsening after infection. The above three cases showed thyroid-stimulating antibodies were enhanced. Case 4, a patient with history of previous hypothyroidism had an increase in thyroid-related antibody (TPOAb and TRAb) activity after infection, followed by a marked worsening of hypothyroidism. Case 5, a patient with no history of thyroid disease suddenly developed controllable "thyrotoxicosis" after infection, suggesting the diagnosis of painless thyroiditis. Conclusion: The five case reports show a different development of the primary autoimmune thyroid disease after COVID-19 infection. The change in the trend of thyroid disease is closely related to the immune response induced by SARS-CoV-2 infection.

2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1469-1474, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37846702

ABSTRACT

OBJECTIVE: To investigate a family with congenital dysfibrinogenemia, and analyze the risk of hemorrhage and thrombosis and blood transfusion strategies. METHODS: Prothrombin time (PT), activated partial thromboplastin time (APTT) and thrombin time (TT) of the proband and her family members were detected by automatic coagulometer, fibrinogen (Fg) activity and antigen were detected by Clauss method and PT algorithm respectively. Meanwhile, thromboelastometry was analyzed for proband and her family members. Then, peripheral blood samples of the proband and her family members were collected, and all exons of FGA, FGB and FGG and their flanks were amplified by PCR and sequenced to search for gene mutations. RESULTS: The proband had normal APTT and PT, slightly prolonged TT, reduced level of Fg activity (Clauss method). The Fg of the proband's aunt, son and daughter all decreased to varying degrees. The results of thromboelastogram indicated that Fg function of the proband and her family members (except her son) was basically normal. Gene analysis showed that there were 6233 G/A (p.AαArg35His) heterozygous mutations in exon 2 of FGA gene in the proband, her children and aunt. In addition, 2 polymorphic loci were found in the family, they were FGA gene g.9308A/G (p.AαThr331Ala) and FGB gene g.12628G/A (p.BßArg478Iys) polymorphism, respectively. The proband was injected with 10 units of cryoprecipitate 2 hours before delivery to prevent bleeding, and no obvious bleeding occurred during and after delivery. CONCLUSION: Heterozygous mutation of 6233G/A (p.AαArg35His) of FGA gene is the biogenetic basis of the disease in this family with congenital dysfibrinogenemia.


Subject(s)
Afibrinogenemia , Fibrinogen , Humans , Child , Female , Fibrinogen/genetics , Pedigree , Afibrinogenemia/genetics , Mutation , Blood Transfusion
3.
Bioorg Chem ; 141: 106836, 2023 12.
Article in English | MEDLINE | ID: mdl-37774436

ABSTRACT

Alzheimer's diseases (AD) and other infectious diseases caused by drug-resistance bacteria have posed a serious threat to human lives and global health. With the aim to search for human acetylcholinesterase (hAChE) inhibitors and antibacterial agents from medicinal plants, 16 phloroglucinol oligomers, including two new phloroglucinol monomers (1a and 1b), four new phloroglucinol dimers (3a, 3b, 4b, and 5a), six new phloroglucinol trimers (6a, 6b, 7a, 7b, 8a, and 8b), and two naturally occurring phloroglucinol monomers (2a and 2b), along with two known congeners (4a and 5b), were purified from the leaves of tropic Rhodomyrtus tomentosa. The structures and absolute configurations of these new isolates were unequivocally established by comprehensive analyses of their spectroscopic data (NMR and HRESIMS), ECD calculation, and single crystal X-ray diffraction. Structurally, 3a/3b shared a rare C-5' formyl group, whereas 6a/6b possessed a unique C-7' aromatic ring. In addition, 7a/7b and 8a/8b were rare phloroglucinol trimers with a bis-furan and a C-6' hemiketal group. Pharmacologically, the mixture of 3a and 3b showed the most potent human acetylcholinesterase (hAChE) inhibitory activity with an IC50 value of 1.21 ± 0.16 µM. The molecular docking studies of 3a and 3b in the hAChE binding sites were performed, displaying good agreement with the in vitro inhibitory effects. In addition, the mixture of 3a and 3b displayed the most significant anti-MRSA (methicillin-resistant Staphylococcus aureus) with MIC and MBC values of both 0.50 µg/mL, and scanning electron microscope (SEM) studies revealed that they could destroy the biofilm structures of MRSA. The findings provide potential candidates for the further development of anti-AD and anti-bacterial agents.


Subject(s)
Anti-Bacterial Agents , Cholinesterase Inhibitors , Methicillin-Resistant Staphylococcus aureus , Phloroglucinol , Humans , Acetylcholinesterase , Anti-Bacterial Agents/pharmacology , Molecular Docking Simulation , Molecular Structure , Phloroglucinol/analogs & derivatives , Phloroglucinol/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Plant Extracts/chemistry
4.
Curr Med Sci ; 43(5): 855-868, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37558865

ABSTRACT

Smad ubiquitylation regulatory factor 1 (Smurf1) is an important homologous member of E6-AP C-terminus type E3 ubiquitin ligase. Initially, Smurf1 was reportedly involved in the negative regulation of the bone morphogenesis protein (BMP) pathway. After further research, several studies have confirmed that Smurf1 is widely involved in various biological processes, such as bone homeostasis regulation, cell migration, apoptosis, and planar cell polarity. At the same time, recent studies have provided a deeper understanding of the regulatory mechanisms of Smurf1's expression, activity, and substrate selectivity. In our review, a brief summary of recent important biological functions and regulatory mechanisms of E3 ubiquitin ligase Smurf1 is proposed.

5.
Medicine (Baltimore) ; 102(8): e32946, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36827014

ABSTRACT

To use network pharmacology and bioinformatics technology to reveal the mechanism of persicae semen-carthami flos drug pair in the treatment of renal fibrosis (RF). Compounds in traditional Chinese medicine were obtained through the Herb database. Appropriate compounds and corresponding drug targets were screened out based on the 5 rules of Lipinski and pharmacokinetics. Screening of suitable disease miRNAs by microarray chips in the GEO database. Find differentially expressed genes by analyzing miRNAs. Protein-protein interaction analysis and enrichment analysis of therapeutic targets were performed using String database and Omicshare platform. Molecular docking via the DockThor platform. A total of 28 drug compounds and 228 drug targets were screened in this study. A total of 9 miRNAs and 6649 disease targets were obtained by GEO2R software analysis. Finally, 97 therapeutic targets were obtained. A total of 1124 Gene Ontology enrichment analysis results were obtained. Therapeutic targets play multiple roles in biological processes, molecular functions, and cellular organization. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the persicae semen-carthami flos drug pair played a role in the treatment of RF mainly through calcium signaling pathway, pathways in cancer, cAMP signaling pathway, and other pathways. Molecular docking showed that the traditional Chinese medicine compounds had good binding ability to the target. Persicae semen and carthami flos play a role in the treatment of RF through multiple targets and multiple pathways. It provides ideas and references for follow-up research and new drug development.


Subject(s)
Drugs, Chinese Herbal , MicroRNAs , Humans , Computational Biology , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology
6.
Educ Inf Technol (Dordr) ; 28(2): 1373-1425, 2023.
Article in English | MEDLINE | ID: mdl-35919874

ABSTRACT

Blended learning is widely known for its ability to improve learning, nevertheless little is still known about the best ways of designing effective blended learning environment which can support immersive learning such as greater learning experience and accessibility to education. In this respect, this study investigates the mapping of the principles of three Education 4.0 innovative pedagogies, namely, heutagogy, peeragogy, and cybergogy, with the capabilities of three technological learning tools, that is, Facebook (FB), Learning Management System (LMS), and Blog, via a systematic literature review technique. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used as the methodology, and the literature was further selected using Gough's Weight of Evidence criteria, resulting in 59 studies. The results show that cognitive factor is the most linked pedagogical principle to the four main capabilities of technological learning tools, that is, time, self-related, learning task, and learning community-related. This mapping is useful for instructors to plan learning and teaching by choosing the technological learning tools that match with appropriate Education 4.0 pedagogies for optimising the immersive blended learning practices.

7.
Educ Inf Technol (Dordr) ; 28(2): 1455-1489, 2023.
Article in English | MEDLINE | ID: mdl-35967831

ABSTRACT

Modern text-to-speech voices can convey social cues ideal for narrating multimedia learning materials. Amazon Alexa has a unique feature among modern text-to-speech vocalizers as she can infuse enthusiasm cues into her synthetic voice. In this first study examining modern text-to-speech voice enthusiasm effects in a multimedia learning environment, a between-subjects online experiment was conducted where learners from a large Asian university (n = 244) listened to either Alexa's: (1) neutral voice, (2) low-enthusiastic voice, (3) medium-enthusiastic voice, or (4) high-enthusiastic voice, narrating a multimedia lesson on distributed denial-of-service attack. While Alexa's enthusiastic voices did not enhance persona ratings compared to Alexa's neutral voice, learners could infer more enthusiasm expressed by Alexa's medium-and high-enthusiastic voices than Alexa's neutral voice. Regarding cognitive load, Alexa's low-and high-enthusiastic voices decreased intrinsic and extraneous cognitive load ratings compared to Alexa's neutral voice. While Alexa's enthusiastic voices did not impact affective-motivational ratings differently from Alexa's neutral voice, learners reported a significant increase of positive emotions from their baseline positive emotions after listening to Alexa's medium-enthusiastic voice. Finally, Alexa's enthusiastic voices did not enhance the learning performance on immediate retention and transfer tests compared to Alexa's neutral voice. This study demonstrates that a modern text-to-speech voice enthusiasm can positively affect learners' emotions and cognitive load during multimedia learning. Theoretical and practical implications are discussed through the lens of the Cognitive Affective Model of E-learning, Integrated-Cognitive Affective Model of Learning with Multimedia, and Cognitive Load Theory. We further outline this study's limitations and recommendations for extending and widening the text-to-speech voice emotions research.

8.
Journal of Experimental Hematology ; (6): 1469-1474, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009998

ABSTRACT

OBJECTIVE@#To investigate a family with congenital dysfibrinogenemia, and analyze the risk of hemorrhage and thrombosis and blood transfusion strategies.@*METHODS@#Prothrombin time (PT), activated partial thromboplastin time (APTT) and thrombin time (TT) of the proband and her family members were detected by automatic coagulometer, fibrinogen (Fg) activity and antigen were detected by Clauss method and PT algorithm respectively. Meanwhile, thromboelastometry was analyzed for proband and her family members. Then, peripheral blood samples of the proband and her family members were collected, and all exons of FGA, FGB and FGG and their flanks were amplified by PCR and sequenced to search for gene mutations.@*RESULTS@#The proband had normal APTT and PT, slightly prolonged TT, reduced level of Fg activity (Clauss method). The Fg of the proband's aunt, son and daughter all decreased to varying degrees. The results of thromboelastogram indicated that Fg function of the proband and her family members (except her son) was basically normal. Gene analysis showed that there were 6233 G/A (p.AαArg35His) heterozygous mutations in exon 2 of FGA gene in the proband, her children and aunt. In addition, 2 polymorphic loci were found in the family, they were FGA gene g.9308A/G (p.AαThr331Ala) and FGB gene g.12628G/A (p.BβArg478Iys) polymorphism, respectively. The proband was injected with 10 units of cryoprecipitate 2 hours before delivery to prevent bleeding, and no obvious bleeding occurred during and after delivery.@*CONCLUSION@#Heterozygous mutation of 6233G/A (p.AαArg35His) of FGA gene is the biogenetic basis of the disease in this family with congenital dysfibrinogenemia.


Subject(s)
Humans , Child , Female , Fibrinogen/genetics , Pedigree , Afibrinogenemia/genetics , Mutation , Blood Transfusion
9.
Phytochemistry ; 203: 113394, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36007662

ABSTRACT

Four undescribed phloroglucinol meroterpenoids, rhodotomentodiones A-D, and one undescribed phloroglucinol dimer, rhodotomentodimer A, were obtained and structurally established from tropic Rhodomyrtus tomentosa leaves. Their structures were unambiguously elucidated based on the comprehensive analyses of the NMR and MS spectroscopic data, electronic circular dichroism (ECD) calculation, and single-crystal X-ray diffraction. In particular, rhodotomentodiones A and B represent the first examples of phloroglucinol meroterpenoids featuring a unique γ-pyranoid moiety. More importantly, rhodotomentodimer A exhibited the most potential human acetylcholinesterase (hAChE) and α-glucosidase inhibitory effects with IC50 values of 7.5 µM and 5.6 µM, respectively. The possible interaction sites of the above potential hAChE and α-glucosidase inhibitor were achieved by molecular docking studies. These findings greatly enrich the diversity of natural products from Myrtaceae species, and provide potential candidates for the further development of anti-Alzheimer and antidiabetic diseases.


Subject(s)
Biological Products , Myrtaceae , Acetylcholinesterase , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Molecular Structure , Myrtaceae/chemistry , Phloroglucinol/chemistry , Phloroglucinol/pharmacology , alpha-Glucosidases
10.
Bioorg Chem ; 117: 105404, 2021 12.
Article in English | MEDLINE | ID: mdl-34749116

ABSTRACT

Alzheimer's disease (AD) diagnoses are greatly increasing in frequency as the global population ages, highlighting an urgent need for new anti-AD strategies. With the aim to search for human acetylcholinesterase (hAChE) inhibitors from the species of Myrtaceae family, ten acylphloroglucinol trimers (APTs), including eight new APTs, callistemontrimers A-H (1a, 1b, 2a, 2b, 3a, 3b, 4b, and 5b), and two naturally occurring ones (4a and 5a), along with one reported triketone-acylphloroglucinol-monoterpene adduct (6), were obtained and structurally characterized from the hAChE inhibitory acetone extract of Callistemon salignus seeds. The structures and their absolute configurations for new APTs were unequivocally established via the detailed interpretation of extensive spectroscopic data (HRESIMS and NMR), ECD calculations, and single crystal X-ray diffraction, whereas the absolute configurations of known APTs were determined by further chiral separation, and calculated ECD calculations. The results of hAChE inhibitory assay revealed that an enantiomeric mixture of 2a/2b, 2a, and 2b are good hAChE inhibitors with IC50 values of 1.22 ±â€¯0.23, 2.28 ±â€¯0.19, and 4.96 ±â€¯0.39 µM, respectively. Molecular docking was used to uncover the modes of interactions for bioactive compounds with the active site of hAChE. In addition, 2 and 6 displayed moderate neurite outgrowth-promoting effects with differentiation rates of 6.16% and 6.19% at a concentration of 1.0 µM, respectively.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Phloroglucinol/pharmacology , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Humans , Molecular Docking Simulation , Myrtaceae/chemistry , Phloroglucinol/analogs & derivatives , Phloroglucinol/isolation & purification , Stereoisomerism , Structure-Activity Relationship
11.
J Am Chem Soc ; 143(38): 15635-15643, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34541841

ABSTRACT

Understanding the fundamental insights of oxygen activation and reaction at metal-oxide interfaces is of significant importance yet remains a major challenge due to the difficulty in in situ characterization of active oxygen species. Herein, the activation and reaction of molecular oxygen during CO oxidation at platinum-ceria interfaces has been in situ explored using surface-enhanced Raman spectroscopy (SERS) via a borrowing strategy, and different active oxygen species and their evolution during CO oxidation at platinum-ceria interfaces have been directly observed. In situ Raman spectroscopic evidence with isotopic exchange experiments demonstrate that oxygen is efficiently dissociated to chemisorbed O on Pt and lattice Ce-O species simultaneously at interfacial Ce3+ defect sites under CO oxidation, leading to a much higher activity at platinum-ceria interfaces compared to that at Pt alone. Further in situ time-resolved SERS studies and density functional theory simulations reveal a more efficient molecular pathway through the reaction between adsorbed CO and chemisorbed Pt-O species transferred from the interfaces. This work deepens the fundamental understandings on oxygen activation and CO oxidation at metal-oxide interfaces and offers a sensitive technique for the in situ characterization of oxygen species under working conditions.

12.
J Exp Clin Cancer Res ; 40(1): 218, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34193219

ABSTRACT

BACKGROUND: Liver cancer stem cells (LCSCs) play key roles in the metastasis, recurrence, and chemotherapeutic resistance of hepatocellular carcinoma (HCC). Our previous research showed that the POSTN gene is closely related to the malignant progression and poor prognosis of HCC. This study aimed to elucidate the role of POSTN in generating LCSCs and maintaining their stemness as well as the underlying mechanisms. METHODS: Human HCC tissues and matched adjacent normal tissues were obtained from 110 patients. Immunohistochemistry, western blotting (WB), and RT-PCR were performed to detect the expression of POSTN and stemness factors. The roles of transforming growth factor (TGF)-ß1 and AP-2α in the POSTN-induced stemness transformation of HCC cells were explored in vitro and in vivo using LCSCs obtained by CD133+ cell sorting. RESULTS: The high expression of POSTN was correlated with the expression of various stemness factors, particularly CD133, in our HCC patient cohort and in TCGA and ICGC datasets. Knockdown of POSTN expression decreased the abilities of HCC cell lines to form tumours in xenograft mouse models. Knockdown of POSTN expression also suppressed cell viability and clone formation, invasion, and sphere formation abilities in vitro. Knockdown of AP-2α attenuated the generation of CD133+ LCSCs and their malignant behaviours, indicating that AP-2α was a critical factor that mediated the POSTN-induced stemness transformation and maintenance of HCC cells. The role of AP-2α was verified by using a specific αvß3 antagonist, cilengitide, in vitro and in vivo. Activation of POSTN could release TGFß1 from the extracellular matrix and initiated POSTN/TGFß1 positive feedback signalling. Furthermore, we found that the combined use of cilengitide and lenvatinib suppressed the growth of HCC cells with high POSTN expression more effectively than the use of lenvatinib alone in the patient-derived xenograft (PDX) mouse model. CONCLUSIONS: The POSTN/TGFß1 positive feedback pathway regulates the expression of stemness factors and the malignant progression of HCC cells by regulating the transcriptional activation of AP-2α. This pathway may serve as a new target for targeted gene therapy in HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Cell Adhesion Molecules/metabolism , Liver Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Transcription Factor AP-2/metabolism , Transforming Growth Factor beta1/metabolism , Adult , Animals , Carcinoma, Hepatocellular/pathology , Cell Proliferation/physiology , Disease Models, Animal , Feedback, Physiological , Heterografts , Humans , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Neoplastic Stem Cells/pathology
13.
Angew Chem Int Ed Engl ; 60(17): 9306-9310, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33523581

ABSTRACT

Developing advanced characterization techniques for single-atom catalysts (SACs) is of great significance to identify their structural and catalytic properties. Raman spectroscopy can provide molecular structure information, and thus, the technique is a promising tool for catalysis. However, its application in SACs remains a great challenge because of its low sensitivity. We develop a highly sensitive strategy that achieves the characterization of the structure of SACs and in situ monitoring of the catalytic reaction processes on them by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) for the first time. Using the strategy, Pd SACs on different supports were identified by Raman spectroscopy and the nucleation process of Pd species from single atoms to nanoparticles was revealed. Moreover, the catalytic reaction processes of the hydrogenation of nitro compounds on Pd SACs were monitored in situ, and molecular insights were obtained to uncover the unique catalytic properties of SACs. This work provides a new spectroscopic tool for the in situ study of SACs, especially at solid-liquid interfaces.

14.
Int J Stem Cells ; 14(1): 94-102, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33377452

ABSTRACT

BACKGROUND AND OBJECTIVES: Human mesenchymal stem cell-conditioned medium (MSC-CM) is produced using mesenchymal stem cell culture technology and has various benefits for the skin, including wrinkle removal, skin regeneration, and increased antioxidant activity. Its popularity is thus increasing in the field of functional cosmetics. METHODS AND RESULTS: In this study, we analyzed the effects of fetal bovine serum-supplemented MSC-CM (FBSMSC-CM) and human platelet lysate-supplemented MSC-CM (hPL-MSC-CM) on skin rejuvenation characteristics. We found that the concentrations of important growth factors (VEGF, TGF-ß1, and HGF) and secretory proteins for skin regeneration were significantly higher in hPL-MSC-CM than in FBS-MSC-CM. Furthermore, the capacity for inducing proliferation of human dermal fibroblast (HDF) and keratinocytes, the migration ability of HDF, extracellular matrix (ECM) production such as collagen and elastin was higher in hPL-MSC-CM than that in FBSMSC-CM. CONCLUSIONS: These results support the usefulness and high economic value of hPL-MSC-CM as an alternative source of FBS-MSC-CM in the cosmetic industry for skin rejuvenation.

15.
Int J Stem Cells ; 14(1): 103-111, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33377453

ABSTRACT

BACKGROUND AND OBJECTIVES: Mesenchymal stem cells (MSCs) have immense therapeutic potential for treating intractable and immune diseases. They also have applications in regenerative medicine in which distinct treatments do not exist. Thus, MSCs are gaining attention as important raw materials in the field of cell therapy. Importantly, the number of MSCs in the bone marrow is limited and they are present only in small quantities. Therefore, mass production of MSCs through long-term culture is necessary to use them in cell therapy. However, MSCs undergo cellular senescence through repeated passages during mass production. In this study, we explored methods to prolong the limited lifetime of MSCs by culturing them with different seeding densities. METHODS AND RESULTS: We observed that in long-term cultures, low-density (LD, 50 cells/cm2) MSCs showed higher population doubling level, leading to greater fold increase, than high-density (HD, 4,000 cells/cm2) MSCs. LD-MSCs suppressed the expression of aging-related genes. We also showed that reactive oxygen species (ROS) were decreased in LD-MSCs compared to that in HD-MSCs. Further, proliferation potential increased when ROS were inhibited in HD-MSCs. CONCLUSIONS: The results in this study suggest that MSC senescence can be delayed and that life span can be extended by controlling cell density in vitro. These results can be used as important data for the mass production of stem cell therapeutic products.

16.
Article in English | WPRIM (Western Pacific) | ID: wpr-874626

ABSTRACT

Background and Objectives@#Human mesenchymal stem cell-conditioned medium (MSC-CM) is produced using mesenchymal stem cell culture technology and has various benefits for the skin, including wrinkle removal, skin regeneration, and increased antioxidant activity. Its popularity is thus increasing in the field of functional cosmetics. @*Methods@#and Results: In this study, we analyzed the effects of fetal bovine serum-supplemented MSC-CM (FBSMSC-CM) and human platelet lysate-supplemented MSC-CM (hPL-MSC-CM) on skin rejuvenation characteristics.We found that the concentrations of important growth factors (VEGF, TGF-β1, and HGF) and secretory proteins for skin regeneration were significantly higher in hPL-MSC-CM than in FBS-MSC-CM. Furthermore, the capacity for inducing proliferation of human dermal fibroblast (HDF) and keratinocytes, the migration ability of HDF, extracellular matrix (ECM) production such as collagen and elastin was higher in hPL-MSC-CM than that in FBSMSC-CM. @*Conclusions@#These results support the usefulness and high economic value of hPL-MSC-CM as an alternative source of FBS-MSC-CM in the cosmetic industry for skin rejuvenation.

17.
Article in English | WPRIM (Western Pacific) | ID: wpr-874625

ABSTRACT

Background and Objectives@#Mesenchymal stem cells (MSCs) have immense therapeutic potential for treating intractable and immune diseases. They also have applications in regenerative medicine in which distinct treatments do not exist. Thus, MSCs are gaining attention as important raw materials in the field of cell therapy. Importantly, the number of MSCs in the bone marrow is limited and they are present only in small quantities. Therefore, mass production of MSCs through long-term culture is necessary to use them in cell therapy. However, MSCs undergo cellular senescence through repeated passages during mass production. In this study, we explored methods to prolong the limited lifetime of MSCs by culturing them with different seeding densities. @*Methods@#and Results: We observed that in long-term cultures, low-density (LD, 50 cells/cm2) MSCs showed higher population doubling level, leading to greater fold increase, than high-density (HD, 4,000 cells/cm2) MSCs. LD-MSCs suppressed the expression of aging-related genes. We also showed that reactive oxygen species (ROS) were decreased in LD-MSCs compared to that in HD-MSCs. Further, proliferation potential increased when ROS were inhibited in HD-MSCs. @*Conclusions@#The results in this study suggest that MSC senescence can be delayed and that life span can be extended by controlling cell density in vitro. These results can be used as important data for the mass production of stem cell therapeutic products.

18.
Int J Mol Sci ; 21(11)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466616

ABSTRACT

The periodontal complex consisting of alveolar bone, cementum, and periodontal ligaments (PDL) supports human teeth through the systematic orchestration of mineralized tissues and fibrous tissues. Importantly, cementum, the outermost mineralized layer of dental roots, plays an essential role by bridging the inner ligaments from the dental root to the alveolar bone. When the periodontal complex is damaged, the regeneration of each component of the periodontal complex is necessary; however, it is still challenging to achieve complete functional regeneration. In this study, we tried to control the regeneration of cementum and PDL by using a human PDL stem cell (hPDLSC) sheet engineering technology with the pretreatment of recombinant human BMP-2 (rhBMP-2). Isolated hPDLSCs obtained from extracted human teeth were pretreated with rhBMP-2 for in vitro osteogenic differentiation and grafted on the micro/macro-porous biphasic calcium phosphate (MBCP) blocks, which represent dental roots. The MBCPs with hPDLSC sheets were implanted in the subcutaneous layer of immune-compromised mice, and rhBMP-2 pretreated hPDLSC sheets showed higher mineralization and collagen ligament deposition than the no-pretreatment group. Therefore, the rhBMP-2-hPDLSC sheet technique could be an effective strategy for the synchronized regeneration of two different tissues: mineralized tissue and fibrous tissues in periodontal complexes.


Subject(s)
Dental Cementum/physiology , Periodontal Ligament/cytology , Regeneration , Stem Cell Transplantation/methods , Animals , Bone Morphogenetic Protein 2/pharmacology , Cells, Cultured , Dental Cementum/cytology , Humans , Hydroxyapatites/chemistry , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred BALB C , Recombinant Proteins/pharmacology , Tissue Engineering/methods , Tissue Scaffolds/chemistry
19.
Angew Chem Int Ed Engl ; 59(26): 10343-10347, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32207867

ABSTRACT

The spillover of hydrogen species and its role in tuning the activity and selectivity in catalytic hydrogenation have been investigated in situ using surface-enhanced Raman spectroscopy (SERS) with 10 nm spatial resolution through the precise fabrication of Au/TiO2 /Pt sandwich nanostructures. In situ SERS study reveals that hydrogen species can efficiently spillover at Pt-TiO2 -Au interfaces, and the ultimate spillover distance on TiO2 is about 50 nm. Combining kinetic isotope experiments and density functional theory calculations, it is found that the hydrogen spillover proceeds via the water-assisted cleavage and formation of surface hydrogen-oxygen bond. More importantly, the selectivity in the hydrogenation of the nitro or isocyanide group is manipulated by controlling the hydrogen spillover. This work provides molecular insights to deepen the understanding of hydrogen activation and boosts the design of active and selective catalysts for hydrogenation.

20.
Chem Commun (Camb) ; 55(60): 8824-8827, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31140479

ABSTRACT

A gap-mode configuration was developed for the in situ SERS study of the structure-activity relationship of Au@Pd core-shell nanocatalysts, which show much better performance in the selective oxidation of benzyl alcohol compared to Pd. The in situ SERS results reveal that the tensile strain in the Pd shell could promote the activation of oxygen, thus improving the activity. Such a tensile strain effect decreases with the increase of the Pd shell thickness, leading to a volcano correlation between the activity and the shell thickness.

SELECTION OF CITATIONS
SEARCH DETAIL
...