Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plant J ; 118(3): 905-919, 2024 May.
Article in English | MEDLINE | ID: mdl-38251949

ABSTRACT

Phosphate (Pi) is essential for plant growth and development. One strategy to improve Pi use efficiency is to enhance Pi remobilization among leaves. Using transcriptome analysis with first (top) and fourth (down) leaf blades from rice (Oryza sativa) in Pi-sufficient and deficient conditions, we identified 1384 genes differentially expressed among these leaf blades. These genes were involved in physiological processes, metabolism, transport, and photosynthesis. Moreover, we identified the Pi efflux transporter gene, OsPHO1;3, responding to Pi-supplied conditions among these leaf blades. OsPHO1;3 is highly expressed in companion cells of phloem, but not xylem, in leaf blades and induced by Pi starvation. Mutation of OsPHO1;3 led to Pi accumulation in second to fourth leaves under Pi-sufficient conditions, but enhanced Pi levels in first leaves under Pi-deficient conditions. These Pi accumulations in leaves of Ospho1;3 mutants resulted from induction of OsPHT1;2 and OsPHT1;8 in root and reduction of Pi remobilization in leaf blades, revealed by the decreased Pi in phloem of leaves. Importantly, lack of OsPHO1;3 caused growth defects under a range of Pi-supplied conditions. These results demonstrate that Pi remobilization is essential for Pi homeostasis and plant growth irrespective of Pi-supplied conditions, and OsPHO1;3 plays an essential role in Pi remobilization for normal plant growth.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Homeostasis , Oryza , Phloem , Phosphate Transport Proteins , Phosphates , Plant Leaves , Plant Proteins , Oryza/genetics , Oryza/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Phosphates/metabolism , Phloem/metabolism , Phloem/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Mutation , Transcriptome
2.
J Agric Food Chem ; 67(17): 4947-4957, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30994343

ABSTRACT

Accumulating pesticide (and herbicide) residues in soils have become a serious environmental problem. This study focused on identifying the removal of two widely used pesticides, isoproturon (IPU) and acetochlor (ACT), by a genetically developed paddy (or rice) plant overexpressing an uncharacterized glycosyltransferase (IRGT1). IRGT1 conferred plant resistance to isoproturon-acetochlor, which was manifested by attenuated cellular injury and alleviated toxicity of rice under isoproturon-acetochlor stress. A short-term study showed that IRGT1-transformed lines removed 33.3-48.3% of isoproturon and 39.8-53.5% of acetochlor from the growth medium, with only 59.5-72.1 and 58.9-70.4% of the isoproturon and acetochlor remaining in the plants compared with the levels in untransformed rice. This phenotype was confirmed by IRGT1-expression in yeast ( Pichia pastoris) which grew better and contained less isoproturon-acetochlor than the control cells. A long-term study showed that isoproturon-acetochlor concentrations at all developmental stages were significantly lower in the transformed rice, which contain only 59.3-69.2% (isoproturon) and 51.7-57.4% (acetochlor) of the levels in wild type. In contrast, UPLC-Q-TOF-MS/MS analysis revealed that more isoproturon-acetochlor metabolites were detected in the transformed rice. Sixteen metabolites of isoproturon and 19 metabolites of acetochlor were characterized in rice for Phase I reactions, and 9 isoproturon and 13 acetochlor conjugates were characterized for Phase II reactions in rice; of these, 7 isoproturon and 6 acetochlor metabolites and conjugates were reported in plants for the first time.


Subject(s)
Herbicides/metabolism , Oryza/genetics , Oryza/metabolism , Pesticide Residues/metabolism , Plants, Genetically Modified/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Genetic Engineering , Herbicides/analysis , Oryza/chemistry , Pesticide Residues/chemistry , Phenylurea Compounds/analysis , Phenylurea Compounds/metabolism , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/genetics , Soil Pollutants/chemistry , Tandem Mass Spectrometry , Toluidines/analysis , Toluidines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL