Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Physiol ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37944070

ABSTRACT

An effect of climate change is the expansion of drylands in temperate regions, predicted to affect microbial biodiversity. Photosynthetic organisms being at the base of ecosystem's trophic networks, we compared an endolithic desiccation-tolerant Chroococcidiopsis cyanobacteria isolated from gypsum rocks in the Atacama Desert, with a freshwater desiccation-sensitive Synechocystis. We sought whether some acclimation traits in response to desiccation and temperature variations were shared, to evaluate the potential of temperate species to possibly become resilient to future arid conditions. When temperature varies, Synechocystis tunes the acyl composition of its lipids, via a homeoviscuous acclimation mechanism known to adjust membrane fluidity, whereas no such change occurs in Chroococcidiopsis. Vice versa, a combined study of photosynthesis and pigment content shows that Chroococcidiopsis remodels its photosynthesis components and keeps an optimal photosynthetic capacity at all temperatures, whereas Synechocystis is unable to such adjustment. Upon desiccation on a gypsum surface, Synechocystis is rapidly unable to revive, whereas Chroococcidiopsis is capable to recover after three weeks. Using X-ray diffraction, we found no evidence that Chroococcidiopsis could use water extracted from gypsum crystal in such conditions, as a surrogate of missing water. The sulfolipid sulfoquinovosyldiacylglycerol becomes the prominent membrane lipid in both dehydrated cyanobacteria, highlighting an overlooked function for this lipid. Chroococcidiopsis keeps a minimal level of monogalactosyldiacylglycerol, which may be essential for the recovery process. Results support that two independent adaptation strategies have evolved in these species to cope with temperature and desiccation increase, and suggest some possible scenarios for microbial biodiversity change triggered by climate change.

2.
Nat Commun ; 14(1): 7500, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980360

ABSTRACT

Sanguina nivaloides is the main alga forming red snowfields in high mountains and Polar Regions. It is non-cultivable. Analysis of environmental samples by X-ray tomography, focused-ion-beam scanning-electron-microscopy, physicochemical and physiological characterization reveal adaptive traits accounting for algal capacity to reside in snow. Cysts populate liquid water at the periphery of ice, are photosynthetically active, can survive for months, and are sensitive to freezing. They harbor a wrinkled plasma membrane expanding the interface with environment. Ionomic analysis supports a cell efflux of K+, and assimilation of phosphorus. Glycerolipidomic analysis confirms a phosphate limitation. The chloroplast contains thylakoids oriented in all directions, fixes carbon in a central pyrenoid and produces starch in peripheral protuberances. Analysis of cells kept in the dark shows that starch is a short-term carbon storage. The biogenesis of cytosolic droplets shows that they are loaded with triacylglycerol and carotenoids for long-term carbon storage and protection against oxidative stress.


Subject(s)
Cysts , Snow , Humans , Chloroplasts/metabolism , Cysts/metabolism , Carbon/metabolism , Starch/metabolism
3.
Cells ; 10(10)2021 10 06.
Article in English | MEDLINE | ID: mdl-34685660

ABSTRACT

Thraustochytrids are marine protists that naturally accumulate triacylglycerol with long chains of polyunsaturated fatty acids, such as ω3-docosahexaenoic acid (DHA). They represent a sustainable response to the increasing demand for these "essential" fatty acids (FAs). Following an attempt to transform a strain of Aurantiochytrium limacinum, we serendipitously isolated a clone that did not incorporate any recombinant DNA but contained two to three times more DHA than the original strain. Metabolic analyses indicated a deficit in FA catabolism. However, whole transcriptome analysis did not show down-regulation of genes involved in FA catabolism. Genome sequencing revealed extensive DNA deletion in one allele encoding a putative peroxisomal adenylate transporter. Phylogenetic analyses and yeast complementation experiments confirmed the gene as a peroxisomal adenylate nucleotide transporter (AlANT1), homologous to yeast ScANT1 and plant peroxisomal adenylate nucleotide carrier AtPNC genes. In yeast and plants, a deletion of the peroxisomal adenylate transporter inhibits FA breakdown and induces FA accumulation, a phenotype similar to that described here. In response to this metabolic event, several compensatory mechanisms were observed. In particular, genes involved in FA biosynthesis were upregulated, also contributing to the high FA accumulation. These results support AlANT1 as a promising target for enhancing DHA production in Thraustochytrids.


Subject(s)
Adenosine Triphosphate/metabolism , Fatty Acids/metabolism , Mutation/genetics , Oils/metabolism , Peroxisomes/metabolism , Stramenopiles/metabolism , Biological Transport , Gene Expression Profiling , Genome , Models, Biological , Phylogeny , Stramenopiles/genetics , Stramenopiles/growth & development , Stramenopiles/ultrastructure , Transcriptome/genetics
4.
ChemSusChem ; 8(21): 3605-16, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26212854

ABSTRACT

The ageing phenomena occurring in various diethyl carbonate/LiPF6 solutions are studied using gamma and pulse radiolysis as a tool to generate similar species as the ones occurring in electrolysis of Li-ion batteries (LIBs). According to picosecond pulse radiolysis experiments, the reaction of the electron with (Li(+), PF6(-)) is ultrafast, leading to the formation of fluoride anions that can then precipitate into LiF(s). Moreover, direct radiation-matter interaction with the salt produces reactive fluorine atoms forming HF(g) and C2H5F(g). The strong Lewis acid PF5 is also formed. This species then forms various R(1)R(2)R(3) P=O molecules, where R is mainly -F, -OH, and -OC2H5. Substitution reactions take place and oligomers are slowly formed. Similar results were obtained in the ageing of an electrochemical cell filled with the same model solution. This study demonstrates that radiolysis enables a description of the reactivity in LIBs from the picosecond timescale until a few days.


Subject(s)
Electric Power Supplies , Electrolytes/chemistry , Lithium Compounds/chemistry , Electrolysis , Mass Spectrometry , Pulse Radiolysis , Solutions , Time Factors , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...