Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 62: 352-70, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23376252

ABSTRACT

A series of symmetrically bis-substituted imidazole analogs bearing at the N-1 and N-3 two biphenyl moieties ortho substituted either with tetrazole or carboxylate functional groups was designed based on docking studies and utilizing for the first time an extra hydrophobic binding cleft of AT1 receptor. The synthesized analogs were evaluated for their in vitro antagonistic activities (pA2 values) and binding affinities (-logIC50 values) to the Angiotensin II AT1 receptor. Among them, the potassium (-logIC50 = 9.04) and the sodium (-logIC50 = 8.54) salts of 4-butyl-N,N'-bis{[2'-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium bromide (12a and 12b, respectively) as well as its free acid 11 (-logIC50 = 9.46) and the 4-butyl-2-hydroxymethyl-N,N'-bis{[2'-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium bromide (14) (-logIC50 = 8.37, pA2 = 8.58) showed high binding affinity to the AT1 receptor and high antagonistic activity (potency). The potency was similar or even superior to that of Losartan (-logIC50 = 8.25, pA2 = 8.25). On the contrary, 2-butyl-N,N'-bis{[2'-[2H-tetrazol-5-yl)]biphenyl-4-yl]methyl}imidazolium bromide (27) (-logIC50 = 5.77) and 2-butyl-4-chloro-5-hydroxymethyl-N,N'-bis{[2'-[2H-tetrazol-5-yl)]biphenyl-4-yl]methyl}imidazolium bromide (30) (-logIC50 = 6.38) displayed very low binding affinity indicating that the orientation of the n-butyl group is of primary importance. Docking studies of the representative highly active 12b clearly showed that this molecule has an extra hydrophobic binding feature compared to prototype drug Losartan and it fits to the extra hydrophobic cavity. These results may contribute to the discovery and development of a new class of biologically active molecules through bis-alkylation of the imidazole ring by a convenient and cost effective synthetic strategy.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Drug Design , Imidazoles/pharmacology , Angiotensin II Type 1 Receptor Blockers/chemical synthesis , Angiotensin II Type 1 Receptor Blockers/chemistry , Dose-Response Relationship, Drug , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Models, Molecular , Molecular Structure , Quantum Theory , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL