Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673864

ABSTRACT

As a follow-up to the previous Special Issue "Aptamers: Functional-Structural Studies and Biomedical Applications" [...].


Subject(s)
Aptamers, Nucleotide , Aptamers, Nucleotide/chemistry , Humans , SELEX Aptamer Technique/methods
2.
Heliyon ; 10(3): e24556, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317956

ABSTRACT

Human angiogenin (hANG) is the most studied stress-induced ribonuclease (RNase). In physiological conditions it performs its main functions in nucleoli, promoting cell proliferation by rDNA transcription, whereas it is strongly limited by its inhibitor (RNH1) throughout the rest of the cell. In stressed cells hANG dissociates from RNH1 and thickens in the cytoplasm where it manages the translational arrest and the recruitment of stress granules, thanks to its propensity to cleave tRNAs and to induce the release of active halves. Since it exists a clear connection between hANG roles and its intracellular routing, starting from our recent findings on heterologous ANG (ANG) properties in human keratinocytes (HaCaT cells), here we designed a variant unable to translocate into the nucleus with the aim of thoroughly verifying its potentialities under stress. This variant, widely characterized for its structural features and biological attitudes, shows more pronounced aid properties than unmodified protein. The collected evidence thus fully prove that ANG stress-induced skills in assisting cellular homeostasis are strictly due to its cytosolic localization. This study opens an interesting scenario for future studies regarding both the strengthening of skin defences and in understanding the mechanism of action of these special enzymes potentially suitable for any cell type.

3.
Dalton Trans ; 53(8): 3476-3483, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38270175

ABSTRACT

The reaction of Pt-based anticancer agents with arsenic trioxide affords robust complexes known as arsenoplatins. The prototype of this family of anticancer compounds is arsenoplatin-1 (AP-1) that contains an As(OH)2 fragment linked to a Pt(II) moiety derived from cisplatin. Crystallographic and spectrometric studies of AP-1 binding to a B-DNA double helix dodecamer are presented here, in comparison with cisplatin and transplatin. Results reveal that AP-1, cisplatin and transplatin react differently with the DNA model system. Notably, in the AP-1/DNA systems, the Pt-As bond can break down with time and As-containing fragments can be released. These results have implications for the understanding of the mechanism of action of arsenoplatins.


Subject(s)
Antineoplastic Agents , Arsenic Trioxide/analogs & derivatives , DNA, B-Form , Cisplatin/chemistry , Transcription Factor AP-1/metabolism , Antineoplastic Agents/chemistry , DNA/chemistry
4.
J Colloid Interface Sci ; 659: 926-935, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219311

ABSTRACT

Achieving a controlled preparation of nanoparticle superstructures with spatially periodic arrangement, also called superlattices, is one of the most intriguing and open questions in soft matter science. The interest in such regular superlattices originates from the potentialities in tailoring the physicochemical properties of the individual constituent nanoparticles, eventually leading to emerging behaviors and/or functionalities that are not exhibited by the initial building blocks. Despite progress, it is currently difficult to obtain such ordered structures; the influence of parameters, such as size, softness, interaction potentials, and entropy, are neither fully understood yet and not sufficiently studied for 3D systems. In this work, we describe the synthesis and characterization of spatially ordered hierarchical structures of coated cerium oxide nanoparticles in water suspension prepared by a bottom-up approach. Covering the CeO2 surface with amphiphilic molecules having chains of appropriate length makes it possible to form ordered structures in which the particles occupy well-defined positions. In the present case superlattice arrangement is accompanied by an improvement in photoluminescence (PL) efficiency, as an increase in PL intensity of the superlattice structure of up to 400 % compared with that of randomly dispersed nanoparticles was observed. To the best of our knowledge, this is one of the first works in the literature in which the coexistence of 3D structures in solution, such as face-centered cubic (FCC) and Frank-Kasper (FK) phases, of semiconductor nanoparticles have been related to their optical properties.

5.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003510

ABSTRACT

Aptamers are synthetic nucleic acids that are developed to target with high affinity and specificity chemical entities ranging from single ions to macromolecules and present a wide range of chemical and physical properties. Their ability to selectively bind proteins has made these compounds very attractive and versatile tools, in both basic and applied sciences, to such an extent that they are considered an appealing alternative to antibodies. Here, by exhaustively surveying the content of the Protein Data Bank (PDB), we review the structural aspects of the protein-aptamer recognition process. As a result of three decades of structural studies, we identified 144 PDB entries containing atomic-level information on protein-aptamer complexes. Interestingly, we found a remarkable increase in the number of determined structures in the last two years as a consequence of the effective application of the cryo-electron microscopy technique to these systems. In the present paper, particular attention is devoted to the articulated architectures that protein-aptamer complexes may exhibit. Moreover, the molecular mechanism of the binding process was analyzed by collecting all available information on the structural transitions that aptamers undergo, from their protein-unbound to the protein-bound state. The contribution of computational approaches in this area is also highlighted.


Subject(s)
Aptamers, Nucleotide , Nucleic Acids , Cryoelectron Microscopy , Aptamers, Nucleotide/chemistry , Proteins/chemistry , Antibodies
6.
Res Pract Thromb Haemost ; 7(6): 102160, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37727847

ABSTRACT

The coagulation process relies on an intricate network of three-dimensional structural interactions and subtle biological regulations. In the present review, we illustrate the state of the art of the structural biology of the coagulation cascade by surveying the Protein Data Bank and the EBI AlphaFold databases. Investigations performed in the last decade have provided structural information on essentially all players involved in the process. Indeed, the initial characterization of specific and rather canonical domains has been progressively extended to complicated multidomain proteins. Recently, the application of cryogenic electron microscopy techniques has unraveled the structural features of highly complex coagulation factors, which has led to enhanced understanding. This review initially focuses on the structure of the individual factors as a function of their involvement in intrinsic, extrinsic, and common pathways. A specific emphasis is given to what is known or unknown on the structural basis of each step of the cascade. Available data providing clues on the structural recognition of the factors involved in the functional partnerships of the pathways are illustrated. Recent structures of important complexes formed by these proteins with regulators are described, focusing on the drugs used as anticoagulants and on their reversal agents. Finally, we highlight the different roles that innovative biomolecules such as aptamers may have in the regulation of the cascade.

7.
Nucleic Acids Res ; 51(16): 8880-8890, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37503836

ABSTRACT

Ligand/protein molecular recognition involves a dynamic process, whereby both partners require a degree of structural plasticity to regulate the binding/unbinding event. Here, we present the characterization of the interaction between a highly dynamic G-rich oligonucleotide, M08s-1, and its target protein, human α-thrombin. M08s-1 is the most active anticoagulant aptamer selected thus far. Circular dichroism and gel electrophoresis analyses indicate that both intramolecular and intermolecular G-quadruplex structures are populated in solution. The presence of thrombin stabilises the antiparallel intramolecular chair-like G-quadruplex conformation, that provides by far the main contribution to the biological activity of the aptamer. The crystal structure of the thrombin-oligonucleotide complex reveals that M08s-1 adopts a kinked structural organization formed by a G-quadruplex domain and a long duplex module, linked by a stretch of five purine bases. The quadruplex motif hooks the exosite I region of thrombin and the duplex region is folded towards the surface of the protein. This structural feature, which has never been observed in other anti-exosite I aptamers with a shorter duplex motif, hinders the approach of a protein substrate to the active site region and may well explain the significant increase in the anticoagulant activity of M08s-1 compared to the other anti-exosite I aptamers.


Subject(s)
Anticoagulants , Aptamers, Nucleotide , Thrombin , Humans , Anticoagulants/chemistry , Aptamers, Nucleotide/chemistry , Circular Dichroism , G-Quadruplexes , Guanine/chemistry , Thrombin/chemistry
8.
Dalton Trans ; 52(21): 6992-6996, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37199244

ABSTRACT

The reaction of the cytotoxic compound dirhodium tetraacetate with a B-DNA double helical dodecamer was studied by X-ray crystallography and mass spectrometry. The structure of the dirhodium/DNA adduct reveals a dimetallic center binding to an adenine via axial coordination. Complementary information has been gained through ESI MS measurements. Comparison between the present data and those previously obtained for cisplatin indicates that the two metallodrugs react with this DNA dodecamer in a significantly different fashion.


Subject(s)
DNA, B-Form , Crystallography, X-Ray , DNA/chemistry , Mass Spectrometry
9.
Inorg Chem ; 62(2): 675-678, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36602395

ABSTRACT

The molecular mechanism of how human serum transferrin (hTF) recognizes cisplatin at the atomic level is still unclear. Here, we report the molecular structure of the adduct formed upon the reaction of hTF with cisplatin. Pt binds the side chain of Met256 (at the N-lobe), without altering the protein overall conformation.


Subject(s)
Cisplatin , Transferrin , Humans , Cisplatin/metabolism , Transferrin/chemistry , Iron/chemistry , Protein Conformation , Protein Binding , Receptors, Transferrin/chemistry , Receptors, Transferrin/metabolism
10.
Mol Ther Nucleic Acids ; 30: 585-594, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36457701

ABSTRACT

Despite their unquestionable properties, oligonucleotide aptamers display some drawbacks that continue to hinder their applications. Several strategies have been undertaken to overcome these weaknesses, using thrombin binding aptamers as proof-of-concept. In particular, the functionalization of a thrombin exosite I binding aptamer (TBA) with aromatic moieties, e.g., naphthalene dimides (N) and dialkoxynaphthalenes (D), attached at the 5' and 3' ends, respectively, proved to be highly promising. To obtain a molecular view of the effects of these modifications on aptamers, we performed a crystallographic analysis of one of these engineered oligonucleotides (TBA-NNp/DDp) in complex with thrombin. Surprisingly, three of the four examined crystallographic structures are ternary complexes in which thrombin binds a TBA-NNp/DDp molecule at exosite II as well as at exosite I, highlighting the ability of this aptamer, differently from unmodified TBA, to also recognize a localized region of exosite II. This novel ability is strictly related to the solvophobic behavior of the terminal modifications. Studies were also performed in solution to examine the properties of TBA-NNp/DDp in a crystal-free environment. The present results throw new light on the importance of appendages inducing a pseudo-cyclic charge-transfer structure in nucleic acid-based ligands to improve the interactions with proteins, thus considerably widening their potentialities.

11.
Int J Mol Sci ; 23(15)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-35955913

ABSTRACT

Human angiogenin (ANG) is a 14-kDa ribonuclease involved in different pathophysiological processes including tumorigenesis, neuroprotection, inflammation, innate immunity, reproduction, the regeneration of damaged tissues and stress cell response, depending on its intracellular localization. Under physiological conditions, ANG moves to the cell nucleus where it enhances rRNA transcription; conversely, recent reports indicate that under stress conditions, ANG accumulates in the cytoplasmic compartment and modulates the production of tiRNAs, a novel class of small RNAs that contribute to the translational inhibition and recruitment of stress granules (SGs). To date, there is still limited and controversial experimental evidence relating to a hypothetical role of ANG in the epidermis, the outermost layer of human skin, which is continually exposed to external stressors. The present study collects compelling evidence that endogenous ANG is able to modify its subcellular localization on HaCaT cells, depending on different cellular stresses. Furthermore, the use of recombinant ANG allowed to determine as this special enzyme is effectively able to counter at various levels the alterations of cellular homeostasis in HaCaT cells, actually opening a new vision on the possible functions that this special enzyme can support also in the stress response of human skin.


Subject(s)
RNA, Transfer , Ribonucleases , Humans , Keratinocytes/metabolism , Oxidative Stress , RNA, Transfer/genetics , Ribonuclease, Pancreatic/metabolism
12.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35563186

ABSTRACT

Aptamers are synthetic molecules of different natures (mostly, DNA or RNA) that recognize a target molecule with high affinity and specificity [...].


Subject(s)
Aptamers, Nucleotide , Aptamers, Nucleotide/chemistry , DNA , SELEX Aptamer Technique
13.
Int J Mol Sci ; 22(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34639143

ABSTRACT

Thrombin is the key enzyme of the entire hemostatic process since it is able to exert both procoagulant and anticoagulant functions; therefore, it represents an attractive target for the developments of biomolecules with therapeutic potential. Thrombin can perform its many functional activities because of its ability to recognize a wide variety of substrates, inhibitors, and cofactors. These molecules frequently are bound to positively charged regions on the surface of protein called exosites. In this review, we carried out extensive analyses of the structural determinants of thrombin partnerships by surveying literature data as well as the structural content of the Protein Data Bank (PDB). In particular, we used the information collected on functional, natural, and synthetic molecular ligands to define the anatomy of the exosites and to quantify the interface area between thrombin and exosite ligands. In this framework, we reviewed in detail the specificity of thrombin binding to aptamers, a class of compounds with intriguing pharmaceutical properties. Although these compounds anchor to protein using conservative patterns on its surface, the present analysis highlights some interesting peculiarities. Moreover, the impact of thrombin binding aptamers in the elucidation of the cross-talk between the two distant exosites is illustrated. Collectively, the data and the work here reviewed may provide insights into the design of novel thrombin inhibitors.


Subject(s)
Aptamers, Nucleotide/metabolism , Hemostatics/metabolism , Thrombin/metabolism , Animals , Aptamers, Nucleotide/chemistry , Binding Sites , Hemostatics/chemistry , Humans , Ligands , Models, Molecular , Protein Binding , Substrate Specificity , Thrombin/chemistry
14.
Int J Biol Macromol ; 181: 858-867, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-33864869

ABSTRACT

The long-range communication between the two exosites of human α-thrombin (thrombin) tightly modulates the protein-effector interactions. Duplex/quadruplex aptamers represent an emerging class of very effective binders of thrombin. Among them, NU172 and HD22 aptamers are at the forefront of exosite I and II recognition, respectively. The present study investigates the simultaneous binding of these two aptamers by combining a structural and dynamics approach. The crystal structure of the ternary complex formed by the thrombin with NU172 and HD22_27mer provides a detailed view of the simultaneous binding of these aptamers to the protein, inspiring the design of novel bivalent thrombin inhibitors. The crystal structure represents the starting model for molecular dynamics studies, which point out the cooperation between the binding at the two exosites. In particular, the binding of an aptamer to its exosite reduces the intrinsic flexibility of the other exosite, that preferentially assumes conformations similar to those observed in the bound state, suggesting a predisposition to interact with the other aptamer. This behaviour is reflected in a significant increase of the anticoagulant activity of NU172 when the inactive HD22_27mer is bound to exosite II, providing a clear evidence of the synergic action of the two aptamers.


Subject(s)
Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Thrombin/chemistry , Thrombin/metabolism , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Crystallography, X-Ray , Fibrinogen/metabolism , Humans , Molecular Dynamics Simulation , Protein Binding , Time Factors
15.
Int J Biol Macromol ; 182: 659-668, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33848550

ABSTRACT

The superfamily of vertebrate ribonucleases, a large group of evolutionarily related proteins, continues to provide interesting structural and functional information. In particular, the crystal structure of SS-RNase-2 from Salmo salar (SS2), here presented, has revealed a novel auto-inhibition mechanism that enriches the number of inhibition strategies observed in some members of the family. Within an essentially unmodified RNase folding, the SS2 active site cleft is in part obstructed by the collapse of an extra pentapeptide inserted in the C-terminal region. This unexpected intrusion alters the organization of the catalytic triad by pushing one catalytic histidine off the pocket. Possible mechanisms to remove the active site obstruction have also been studied through the production of two mutants that provide useful information on the functionality of this intriguing version of the ribonuclease superfamily.


Subject(s)
Fish Proteins/chemistry , Ribonucleases/chemistry , Animals , Evolution, Molecular , Fish Proteins/genetics , Fish Proteins/metabolism , Protein Domains , Protein Folding , Ribonucleases/genetics , Ribonucleases/metabolism , Salmo salar/metabolism
16.
Mol Ther Nucleic Acids ; 23: 863-871, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33614235

ABSTRACT

Post-SELEX modification of DNA aptamers is an established strategy to improve their affinity or inhibitory characteristics. In this study, we examined the possibility of increasing the recognition interface between the thrombin-binding aptamer HD1 (TBA) and thrombin by adding a chemically modified side chain to selected nucleotide residues. A panel of 22 TBA variants with N3-modified residues T3 and T12 was prepared by a two-step modification procedure. Aptamers were characterized by a combination of biophysical and biochemical methods. We identified mutants with enhanced affinity and improved anticoagulant activity. The crystal structures of thrombin complexes with three selected modified variants revealed that the modified pyrimidine base invariably allocates in proximity to thrombin residues Tyr76 and Ile82 due to the directing role of the unmodified TT loop. The modifications induced an increase in the contact areas between thrombin and the modified TBAs. Comparative analysis of the structural, biochemical, and biophysical data suggests that the non-equivalent binding modes of the mutants with thrombin in the T3- and T12-modified series account for the observed systematic differences in their affinity characteristics. In this study, we show that extending the recognition surface between the protein and modified aptamers is a promising approach that may improve characteristics of aptamer ligands.

17.
J Biomol Struct Dyn ; 39(6): 2199-2209, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32202471

ABSTRACT

Human α-thrombin (thrombin) is a multifunctional enzyme that plays a pivotal role in the coagulation pathway. Thrombin activity can be effectively modulated by G-quadruplex-based oligonucleotide aptamers that specifically interact with the two positively charged regions (exosites I and II) on the protein surface. Although insightful atomic-level snapshots of the recognition between thrombin and aptamers have been recently achieved through crystallographic analyses, some dynamic aspects of this interaction have not been fully characterized. We here report molecular dynamics simulations of thrombin in different association states: ligand-free and binary/ternary complexes with the aptamers TBA (at exosite I) and HD22_27mer (at exosite II). The simulations carried out on the binary and ternary complexes formed by thrombin with these aptamers provide a dynamic view of the interactions that stabilize them in a crystal-free environment. Interestingly, the analysis of the dynamics of the exosites in different thrombin binding states clearly indicates that the HD22_27mer binding at the exosite II favours conformations of exosite I that are prone to the TBA binding. Similar effects are observed upon the binding of TBA to the exosite I. These observations provide an atomic-level picture of the exosite inter-communication in thrombin and explain the experimentally detected cooperativity of the TBA/HD22_27mer binding.


Subject(s)
Aptamers, Nucleotide , Thrombin , Aptamers, Nucleotide/metabolism , Binding Sites , Humans , Ligands , Molecular Dynamics Simulation , Protein Binding , Thrombin/metabolism
18.
Chemistry ; 26(43): 9589-9597, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32363791

ABSTRACT

The replacement of one or more nucleotide residues in the potent α-thrombin-binding aptamer NU172 with hexitol-based nucleotides has been devised to study the effect of these substitutions on the physicochemical and functional properties of the anticoagulant agent. The incorporation of single hexitol nucleotides at the T9 and G18 positions of NU172 substantially retained the physicochemical features of the parent oligonucleotide, as a result of the biomimetic properties of the hexitol backbone. Importantly, the NU172-TH 9 mutant exhibited a higher binding affinity toward human α-thrombin than the native aptamer and an improved stability even after 24 h in 90 % human serum, with a significant increase in the estimated half-life. The anticoagulant activity of the modified oligonucleotide was also found to be slightly preferable to NU172. Overall, these results confirm the potential of hexitol nucleotides as biomimetic agents, while laying the foundations for the development of NU172-inspired α-thrombin-binding aptamers.


Subject(s)
Anticoagulants/chemistry , Aptamers, Nucleotide/chemistry , Sugar Alcohols/chemistry , Thrombin/chemistry , Humans , Structure-Activity Relationship
19.
Nucleic Acids Res ; 46(22): 12177-12185, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30357392

ABSTRACT

Despite aptamers are very promising alternative to antibodies, very few of them are under clinical trials or are used as drugs. Among them, NU172 is currently in Phase II as anticoagulant in heart disease treatments. It inhibits thrombin activity much more effectively than TBA, the best-known thrombin binding aptamer. The crystal structure of thrombin-NU172 complex reveals a bimodular duplex/quadruplex architecture for the aptamer, which binds thrombin exosite I through a highly complementary surface involving all three loops of the G-quadruplex module. Although the duplex domain does not interact directly with thrombin, the features of the duplex/quadruplex junction and the solution data on two newly designed NU172 mutants indicate that the duplex moiety is important for the optimization of the protein-ligand interaction and for the inhibition of the enzyme activity. Our work discloses the structural features determining the inhibition of thrombin by NU172 and put the basis for the design of mutants with improved properties.


Subject(s)
Aptamers, Nucleotide/chemistry , Fibrinolytic Agents/chemistry , Thrombin/chemistry , Amino Acid Motifs , Anticoagulants/chemistry , Circular Dichroism , Crystallography, X-Ray , Fibrinogen/chemistry , G-Quadruplexes , Humans , Ligands , Models, Molecular , Mutation , Oligonucleotides/chemistry , Protein Binding , Protein Conformation
20.
Biotechnol Prog ; 34(1): 150-159, 2018 01.
Article in English | MEDLINE | ID: mdl-29063721

ABSTRACT

The Cytotoxic Necrotizing Factor 1 (CNF1) is a bacterial toxin secreted by certain Escherichia coli strains causing severe pathologies, making it a protein of pivotal interest in toxicology. In parallel, the CNF1 capability to influence important neuronal processes, like neuronal arborization, astrocytic support, and efficient ATP production, has been efficiently used in the treatment of neurological diseases, making it a promising candidate for therapy. Nonetheless, there are still some unsolved issues about the CNF1 mechanism of action and structuration probably caused by the difficulty to achieve sufficient amounts of the full-length protein for further studies. Here, we propose an efficient strategy for the production and purification of this toxin as a his-tagged recombinant protein from E. coli extracts (CNF1-H8). CNF1-H8 was expressed at the low temperature of 15°C to diminish its characteristic degradation. Then, its purification was achieved using an immobilized metal affinity chromatography (IMAC) and a size exclusion chromatography so as to collect up to 8 mg of protein per liter of culture in a highly pure form. Routine dynamic light scattering (DLS) experiments showed that the recombinant protein preparations were homogeneous and preserved this state for a long time. Furthermore, CNF1-H8 functionality was confirmed by testing its activity on purified RhoA and on HEp-2 cultured cells. Finally, a first structural characterization of the full-length toxin in terms of secondary structure and thermal stability was performed by circular dichroism (CD). These studies demonstrate that our system can be used to produce high quantities of pure recombinant protein for a detailed structural analysis. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:150-159, 2018.


Subject(s)
Bacterial Toxins/isolation & purification , Escherichia coli Proteins/isolation & purification , Escherichia coli/chemistry , Recombinant Proteins/isolation & purification , Bacterial Toxins/chemistry , Cell Line , Chromatography, Affinity , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Humans , Recombinant Proteins/chemistry , rhoA GTP-Binding Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...