Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Lett ; 293: 172-183, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29146291

ABSTRACT

The bispyridinium compound MB327 has been shown previously to have a positive pharmacological effect against poisoning with organophosphorous compounds (OPCs). The mechanism by which it exerts its therapeutic effect seems to be directly mediated by the nicotinic acetylcholine receptor (nAChR). In the present study, the development of mass spectrometry based binding assays (MS Binding Assays) for characterization of the binding site of MB327 at the nAChR from Torpedo californica is described. MS Binding Assays follow the principle of radioligand binding assays, but do not, in contrast to the latter, require a radiolabeled reporter ligand, as the readout is in this case based on mass spectrometric detection. For [2H6]MB327, a deuterated MB327 analogue employed as reporter ligand in the MS Binding Assays, an LC-ESI-MS/MS method was established allowing for its fast and reliable quantification in samples resulting from binding experiments. Using centrifugation for separation of non-bound [2H6]MB327 from target-bound [2H6]MB327 in saturation and autocompetition experiments (employing native MB327 as competitor) enabled reliable determination of specific binding. In this way, the affinities for [2H6]MB327 (Kd=15.5±0.9µmolL-1) and for MB327 (Ki=18.3±2.6µmolL-1) towards the nAChR could be determined for the first time. The almost exactly matching affinities for MB327 and [2H6]MB327 obtained in the MS Binding Assays are in agreement with potencies previously found in functional studies. In summary, our results demonstrate that the established MS Binding Assays represent a promising tool for affinity determination of test compounds towards the binding site of MB327 at the nAChR.


Subject(s)
Binding Sites/drug effects , Cholinesterase Reactivators/pharmacology , Mass Spectrometry/methods , Pyridinium Compounds/pharmacology , Receptors, Nicotinic/drug effects , Animals , Binding, Competitive/drug effects , Carbachol/metabolism , Chromatography, High Pressure Liquid , Models, Molecular , Phencyclidine/metabolism , Radioligand Assay , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Torpedo
2.
Appl Radiat Isot ; 57(2): 185-91, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12150277

ABSTRACT

2-[18F]Fluoro-L-tyrosine is a fluorine labelled amino acid, known to be incorporated into newly synthesised proteins, rendering it a potentially suitable tracer to image protein metabolism in vivo using positron emission tomography. For the electrophilic preparation of 2-[18F]fluoro-L-tyrosine three protected 2-trialkylstannyl tyrosine derivatives have been synthesised for the first time as precursors. While O,N-di-Boc-2-triethylstannyl-L-tyrosine ethylester has proved to be suitable as precursor for radiosynthesis, imidazolidinon-derivatives of 2-triaklylstannyl tyrosine have not because of difficult fast hydrolysis of a phenolic O-methyl protective group. The di-Boc-tin derivative of tyrosine ethylester readily reacted with [18F]F2, which was prepared via the 18O(p,n)18F nuclear reaction. 2-[18F]Fluoro-L-tyrosine was isolated after full deprotection with aqueous hydrobromic acid and HPLC purification with activities of 1.41 +/- 0.32GBq. The isomeric and enantiomeric purity is high (both >99%). The preparation procedure is facile and easy to automate. The chemical yields of this fluoro-de-stannylation reaction as well as of the synthesis of 6-[18F]fluoro-L-dopa, determined with an analogous precursor and non-radioactive fluorine under identical conditions, amounted to 42.7 +/- 1.6% and 60.2 +/- 2.8%, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...