Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4901, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596277

ABSTRACT

Droplets residing on textured oil-impregnated surfaces form a wetting ridge due to the imbalance of interfacial forces at the contact line, leading to a wealth of phenomena not seen on traditional lotus-leaf-inspired non-wetting surfaces. Here, we show that the wetting ridge leads to long-range attraction between millimeter-sized droplets, which coalesce in three distinct stages: droplet attraction, lubricant draining, and droplet merging. Our experiments and model show that the magnitude of the velocity and acceleration at which droplets approach each other horizontally is the same as the vertical oil rise velocity and acceleration in the wetting ridge. Moreover, the droplet coalescence mechanism can be modeled using the classical mass-spring system. The insights gained from this work will inform future fundamental studies on remote droplet interaction on textured oil-impregnated surfaces for optimizing water harvesting and condensation heat transfer.

2.
J Fluoresc ; 33(5): 1813-1825, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36847932

ABSTRACT

Ultraviolet (UV)-excited visible fluorescence is an attractive option for low-cost, low-complexity, rapid imaging of bacterial and fungal samples for imaging diagnostics in the biomedical community. While several studies have shown there is potential for identification of microbial samples, very little quantitative information is available in the literature for the purposes of diagnostic design. In this work, two non-pathogenic bacteria samples (E. coli pYAC4, and B. subtilis PY79) and a wild-cultivated green bread mold fungus sample are characterized spectroscopically for the purpose of diagnostic design. For each sample, fluorescence spectra excited with low-power near-UV continuous wave (CW) sources, and extinction and elastic scattering spectra are captured and compared. Absolute fluorescence intensity per cell excited at 340 nm is estimated from imaging measurements of aqueous samples. The results are used to estimate detection limits for a prototypical imaging experiment. It was found that fluorescence imaging is feasible for as few as 35 bacteria cells (or [Formula: see text]30 µm3 of bacteria) per pixel, and that the fluorescence intensity per unit volume is similar for the three samples tested here. A discussion and model of the mechanism of bacterial fluorescence in E. coli is provided.


Subject(s)
Bacillus subtilis , Escherichia coli , Bread , Spectrometry, Fluorescence
3.
Environ Sci Technol ; 55(17): 12019-12031, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34423630

ABSTRACT

Estimates show that 6.2 gigatons of carbon dioxide (CO2) can be captured and utilized across three pathways, concrete, chemical, and minerals, by 2050. However, it is difficult to compare the climate benefit across these three carbon capture and utilization (CCU) pathways to determine the most effective use of captured CO2. The life cycle assessment methods to evaluate the climate benefit of CCU chemicals should additionally account for the change in material properties of concrete due to CO2 utilization. Furthermore, with most CO2 utilization technologies being in the early stages of research and development, the uncertainty and variability in process and inventory data present a significant challenge in evaluating the climate benefit. We present a stochastically determined climate return on investment (ROI) metric to rank and prioritize CO2 utilization across 20 concrete, chemical and mineral pathways based on the realized climate benefit. We show that two concrete pathways, which use CO2 during concrete mixing, and two chemical pathways, which produce formic acid through hydrogenation of CO2 and carbon monoxide through dry reforming of methane, generate the greatest climate ROI and are the only CCU pathways with a higher likelihood of generating a climate benefit than a climate burden.


Subject(s)
Carbon Dioxide , Climate , Climate Change , Methane , Minerals
8.
Faraday Discuss ; 230(0): 9-29, 2021 07 16.
Article in English | MEDLINE | ID: mdl-33960353

ABSTRACT

This introduction to the Faraday Discussion on carbon dioxide utilization (CDU) provides a framework to lay out the need for CDU, the opportunities, boundary conditions, potential pitfalls, and critical needs to advance the required technologies in the time needed. CDU as a mainstream climate-relevant solution is gaining rapid traction as measured by the increase in the number of related publications, the investment activity, and the political action taken in various countries.

9.
Nat Commun ; 12(1): 855, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33558537

ABSTRACT

Carbon capture and utilization for concrete production (CCU concrete) is estimated to sequester 0.1 to 1.4 gigatons of carbon dioxide (CO2) by 2050. However, existing estimates do not account for the CO2 impact from the capture, transport and utilization of CO2, change in compressive strength in CCU concrete and uncertainty and variability in CCU concrete production processes. By accounting for these factors, we determine the net CO2 benefit when CCU concrete produced from CO2 curing and mixing substitutes for conventional concrete. The results demonstrate a higher likelihood of the net CO2 benefit of CCU concrete being negative i.e. there is a net increase in CO2 in 56 to 68 of 99 published experimental datasets depending on the CO2 source. Ensuring an increase in compressive strength from CO2 curing and mixing and decreasing the electricity used in CO2 curing are promising strategies to increase the net CO2 benefit from CCU concrete.

10.
Biomed Opt Express ; 8(10): 4514-4522, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-29082081

ABSTRACT

A micro-plenoptic system was designed to capture the three-dimensional (3D) topography of the anterior iris surface by simple single-shot imaging. Within a depth-of-field of 2.4 mm, depth resolution of 10 µm can be achieved with accuracy (systematic errors) and precision (random errors) below 20%. We demonstrated the application of our micro-plenoptic imaging system on two healthy irides, an iris with naevi, and an iris with melanoma. The ridges and folds, with height differences of 10~80 µm, on the healthy irides can be effectively captured. The front surface on the iris naevi was flat, and the iris melanoma was 50 ± 10 µm higher than the surrounding iris. The micro-plenoptic imaging system has great potential to be utilized for iris disease diagnosis and continuing, simple monitoring.

11.
J Vis Exp ; (76)2013 Jun 24.
Article in English | MEDLINE | ID: mdl-23851899

ABSTRACT

Multi-dimensional and transient flows play a key role in many areas of science, engineering, and health sciences but are often not well understood. The complex nature of these flows may be studied using particle image velocimetry (PIV), a laser-based imaging technique for optically accessible flows. Though many forms of PIV exist that extend the technique beyond the original planar two-component velocity measurement capabilities, the basic PIV system consists of a light source (laser), a camera, tracer particles, and analysis algorithms. The imaging and recording parameters, the light source, and the algorithms are adjusted to optimize the recording for the flow of interest and obtain valid velocity data. Common PIV investigations measure two-component velocities in a plane at a few frames per second. However, recent developments in instrumentation have facilitated high-frame rate (>1 kHz) measurements capable of resolving transient flows with high temporal resolution. Therefore, high-frame rate measurements have enabled investigations on the evolution of the structure and dynamics of highly transient flows. These investigations play a critical role in understanding the fundamental physics of complex flows. A detailed description for performing high-resolution, high-speed planar PIV to study a transient flow near the surface of a flat plate is presented here. Details for adjusting the parameter constraints such as image and recording properties, the laser sheet properties, and processing algorithms to adapt PIV for any flow of interest are included.


Subject(s)
Image Processing, Computer-Assisted/methods , Rheology/methods , Algorithms , Lasers , Surface Properties
12.
Opt Express ; 20(8): 9031-7, 2012 Apr 09.
Article in English | MEDLINE | ID: mdl-22513613

ABSTRACT

This paper introduces single-camera, three-dimensional particle tracking velocimetry (SC3D-PTV), an image-based, single-camera technique for measuring 3-component, volumetric velocity fields in environments with limited optical access, in particular, optically accessible internal combustion engines. The optical components used for SC3D-PTV are similar to those used for two-camera stereoscopic-µPIV, but are adapted to project two simultaneous images onto a single image sensor. A novel PTV algorithm relying on the similarity of the particle images corresponding to a single, physical particle produces 3-component, volumetric velocity fields, rather than the 3-component, planar results obtained with stereoscopic PIV, and without the reconstruction of an instantaneous 3D particle field. The hardware and software used for SC3D-PTV are described, and experimental results are presented.

13.
Appl Opt ; 48(4): B94-B104, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19183588

ABSTRACT

Simultaneous high-speed in-cylinder measurements of laser-induced fluorescence of biacetyl as a fuel tracer and mid-infrared broadband absorption of fuel and combustion products (water and carbon dioxide) using a spark plug probe are compared in an optical engine. The study addresses uncertainties and the applicability of absorption measurements at a location slightly offset to the spark plug when information about mixing at the spark plug is desired. Absorbance profiles reflect important engine operation events, such as valve opening and closing, mixing, combustion, and outgassing from crevices.

14.
Phys Chem Chem Phys ; 8(45): 5328-38, 2006 Dec 07.
Article in English | MEDLINE | ID: mdl-19810411

ABSTRACT

We describe experiments designed to measure the fraction of nitric oxide molecules that undergo quenching from A 2Sigma+ (nu' = 0) directly to X 2Pi(nu" = 0). This quenching channel was investigated for room temperature collisions with O2, CO, CO2, and H2O by measuring recovery of the ground-state population following intense laser excitation. Experiments were conducted in a room temperature flow cell containing dilute mixtures of NO, N2, and the quenching gases. An intense nanosecond laser pulse, tuned to the NO A 2Sigma(+) - X 2Pi(0,0) Q11 + pQ21 bandhead at 226.3 nm, depopulated more than 20% of the equilibrium population in the X 2Pi(nu'' = 0) manifold. A weak, time-delayed, picosecond laser pulse, tuned to the A 2Sigma(+) - 2Pi(1,0) Q11 + pQ21 bandhead at 214.9 nm, probed recovery of population in X(nu'' = 0) via subsequent LIF for each of the investigated quenchers. Remarkably large branching ratios were observed for direct quenching to X 2Pi(nu'' = 0). Water, carbon monoxide, and oxygen quench NO A 2Sigma+ (v' = 0) to X 2Pi(nu" = 0) with branching ratios that are approximately 0.3. The significantly higher branching ratio for quenching by carbon dioxide is 0.6. The results provide insight on the NO quenching process and represent an important step toward a detailed understanding of the effects of collisional energy transfer on saturated laser-induced fluorescence, which is necessary to properly model detection strategies based on high laser fluences.

15.
Appl Opt ; 44(31): 6682-91, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16270557

ABSTRACT

An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.

SELECTION OF CITATIONS
SEARCH DETAIL