Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Mater ; 15(12): 1261-1266, 2016 12.
Article in English | MEDLINE | ID: mdl-27571452

ABSTRACT

The spin-orbit interaction couples the electrons' motion to their spin. As a result, a charge current running through a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice versa (inverse spin Hall effect, ISHE). The emergence of SHE and ISHE as charge-to-spin interconversion mechanisms offers a variety of novel spintronic functionalities and devices, some of which do not require any ferromagnetic material. However, the interconversion efficiency of SHE and ISHE (spin Hall angle) is a bulk property that rarely exceeds ten percent, and does not take advantage of interfacial and low-dimensional effects otherwise ubiquitous in spintronic hetero- and mesostructures. Here, we make use of an interface-driven spin-orbit coupling mechanism-the Rashba effect-in the oxide two-dimensional electron system (2DES) LaAlO3/SrTiO3 to achieve spin-to-charge conversion with unprecedented efficiency. Through spin pumping, we inject a spin current from a NiFe film into the oxide 2DES and detect the resulting charge current, which can be strongly modulated by a gate voltage. We discuss the amplitude of the effect and its gate dependence on the basis of the electronic structure of the 2DES and highlight the importance of a long scattering time to achieve efficient spin-to-charge interconversion.

2.
Nucleic Acids Symp Ser (Oxf) ; (52): 147-8, 2008.
Article in English | MEDLINE | ID: mdl-18776296

ABSTRACT

A new approach is described for the insertion of nitroxide spin-labels at specific positions within DNA oligomers. The latter bioconjugaison strategy is based on a click chemistry 1,3-dipolar cycloaddition between a spin-labeling reagent, namely the 4-azido-TEMPO, and alkyne modified uridine-containing oligonucleotides. This highly efficient labeling method was applied for site-specific incorporation of two TEMPO units within a set of double-stranded DNA constructs. Then the determination of the inter-nitroxide distances was achieved by using a four-pulses DEER technique that successfully validates the new site-directed spin labeling strategy.


Subject(s)
Azides/chemistry , Cyclic N-Oxides/chemistry , DNA Probes/chemistry , Spin Labels , Biochemistry/methods , Chromatography, High Pressure Liquid , Electron Spin Resonance Spectroscopy , Uridine/analogs & derivatives , Uridine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL