Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
IUBMB Life ; 76(9): 632-646, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38738523

ABSTRACT

Protein kinase B (AKT1) is a serine/threonine kinase that regulates fundamental cellular processes, including cell survival, proliferation, and metabolism. AKT1 activity is controlled by two regulatory phosphorylation sites (Thr308, Ser473) that stimulate a downstream signaling cascade through phosphorylation of many target proteins. At either or both regulatory sites, hyperphosphorylation is associated with poor survival outcomes in many human cancers. Our previous biochemical and chemoproteomic studies showed that the phosphorylated forms of AKT1 have differential selectivity toward peptide substrates. Here, we investigated AKT1-dependent activity in human cells, using a cell-penetrating peptide (transactivator of transcription, TAT) to deliver inactive AKT1 or active phospho-variants to cells. We used enzyme engineering and genetic code expansion relying on a phosphoseryl-transfer RNA (tRNA) synthetase (SepRS) and tRNASep pair to produce TAT-tagged AKT1 with programmed phosphorylation at one or both key regulatory sites. We found that all TAT-tagged AKT1 variants were efficiently delivered into human embryonic kidney (HEK 293T) cells and that only the phosphorylated AKT1 (pAKT1) variants stimulated downstream signaling. All TAT-pAKT1 variants induced glycogen synthase kinase (GSK)-3α phosphorylation, as well as phosphorylation of ribosomal protein S6 at Ser240/244, demonstrating stimulation of downstream AKT1 signaling. Fascinatingly, only the AKT1 variants phosphorylated at S473 (TAT-pAKT1S473 or TAT-pAKT1T308,S473) were able to increase phospho-GSK-3ß levels. Although each TAT-pAKT1 variant significantly stimulated cell proliferation, cells transduced with TAT-pAKT1T308 grew significantly faster than with the other pAKT1 variants. The data demonstrate differential activity of the AKT1 phospho-forms in modulating downstream signaling and proliferation in human cells.


Subject(s)
Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Phosphorylation , HEK293 Cells , Substrate Specificity , Signal Transduction , Cell-Penetrating Peptides/metabolism , Cell-Penetrating Peptides/genetics
2.
Cells ; 11(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36497091

ABSTRACT

Protein kinase B (AKT1) is a serine/threonine kinase and central transducer of cell survival pathways. Typical approaches to study AKT1 biology in cells rely on growth factor or insulin stimulation that activates AKT1 via phosphorylation at two key regulatory sites (Thr308, Ser473), yet cell stimulation also activates many other kinases. To produce cells with specific AKT1 activity, we developed a novel system to deliver active AKT1 to human cells. We recently established a method to produce AKT1 phospho-variants from Escherichia coli with programmed phosphorylation. Here, we fused AKT1 with an N-terminal cell penetrating peptide tag derived from the human immunodeficiency virus trans-activator of transcription (TAT) protein. The TAT-tag did not alter AKT1 kinase activity and was necessary and sufficient to rapidly deliver AKT1 protein variants that persisted in human cells for 24 h without the need to use transfection reagents. TAT-pAKT1T308 induced selective phosphorylation of the known AKT1 substrate GSK-3α, but not GSK-3ß, and downstream stimulation of the AKT1 pathway as evidenced by phosphorylation of ribosomal protein S6 at Ser240/244. The data demonstrate efficient delivery of AKT1 with programmed phosphorylation to human cells, thus establishing a cell-based model system to investigate signaling that is dependent on AKT1 activity.


Subject(s)
Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Protein Serine-Threonine Kinases/metabolism , Phosphorylation , Signal Transduction , Insulin/metabolism
3.
Front Mol Biosci ; 9: 1031756, 2022.
Article in English | MEDLINE | ID: mdl-36304926

ABSTRACT

Over-expression of genetically encoded thioredoxin reductase 1 (TrxR1) TrxR1 can be toxic to cells due to the formation of a truncated version of the enzyme. We developed a new mammalian cell-based model to investigate TrxR1 activity. Fusion of the HIV-derived cell penetrating peptide (TAT) enabled efficient cellular uptake of purified TrxR1 containing 21 genetically encoded amino acids, including selenocysteine. The TAT peptide did not significantly alter the catalytic activity of TrxR1 in vitro. We monitored TrxR1-dependent redox activity in human cells using a TrxR1-specific red fluorescent live-cell reporter. Using programmed selenocysteine incorporation in Escherichia coli, our approach allowed efficient production of active recombinant human selenoprotein TrxR1 for delivery to the homologous context of the mammalian cell. The delivered TAT-TrxR1 showed robust activity in live cells and provided a novel platform to study TrxR1 biology in human cells.

4.
Elife ; 112022 05 11.
Article in English | MEDLINE | ID: mdl-35543705

ABSTRACT

Engineering transfer RNAs to read codons consisting of four bases requires changes in tRNA that go beyond the anticodon sequence.


Subject(s)
Anticodon , RNA, Transfer , Codon/genetics , Genetic Code , RNA, Transfer/genetics
5.
Cells ; 11(5)2022 02 26.
Article in English | MEDLINE | ID: mdl-35269443

ABSTRACT

The phosphoinositide-3-kinase (PI3K)/AKT pathway regulates cell survival and is over-activated in most human cancers, including ovarian cancer. Following growth factor stimulation, AKT1 is activated by phosphorylation at T308 and S473. Disruption of the AKT1 signaling pathway is sufficient to inhibit the epithelial-mesenchymal transition in epithelial ovarian cancer (EOC) cells. In metastatic disease, adherent EOC cells transition to a dormant spheroid state, characterized previously by low S473 phosphorylation in AKT1. We confirmed this finding and observed that T308 phosphorylation was yet further reduced in EOC spheroids and that the transition from adherent to spheroid growth is accompanied by significantly increased levels of let-7 miRNAs. We then used mechanistic studies to investigate the impact of let-7 miRNAs on AKT1 phosphorylation status and activity in cells. In growth factor-stimulated HEK 293T cells supplemented with let-7a, we found increased phosphorylation of AKT1 at T308, decreased phosphorylation at S473, and enhanced downstream AKT1 substrate GSK-3ß phosphorylation. Let-7b and let-7g also deregulated AKT signaling by rendering AKT1 insensitive to growth factor simulation. We uncovered let-7a-dependent deregulation of PI3K pathway components, including PI3KC2A, PDK1, and RICTOR, that govern AKT1 phosphorylation and activity. Together, our data show a new role for miRNAs in regulating AKT signaling.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial , Glycogen Synthase Kinase 3 beta/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism
6.
RNA Biol ; 18(sup1): 397-408, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34288801

ABSTRACT

In the cell, RNA abundance is dynamically controlled by transcription and decay rates. Posttranscriptional nucleotide addition at the RNA 3' end is a means of regulating mRNA and RNA stability and activity, as well as marking RNAs for degradation. The human nucleotidyltransferase Gld2 polyadenylates mRNAs and monoadenylates microRNAs, leading to an increase in RNA stability. The broad substrate range of Gld2 and its role in controlling RNA stability make the regulation of Gld2 activity itself imperative. Gld2 activity can be regulated by post-translational phosphorylation via the oncogenic kinase Akt1 and other kinases, leading to either increased or almost abolished enzymatic activity, and here we confirm that Akt1 phosphorylates Gld2 in a cellular context. Another means to control Gld2 RNA specificity and activity is the interaction with RNA binding proteins. Known interactors are QKI-7 and CPEB, which recruit Gld2 to specific miRNAs and mRNAs. We investigate the interplay between five phosphorylation sites in the N-terminal domain of Gld2 and three RNA binding proteins. We found that the activity and RNA specificity of Gld2 is dynamically regulated by this network. Binding of QKI-7 or phosphorylation at S62 relieves the autoinhibitory function of the Gld2 N-terminal domain. Binding of QKI-7 to a short peptide sequence within the N-terminal domain can also override the deactivation caused by Akt1 phosphorylation at S116. Our data revealed that Gld2 substrate specificity and activity can be dynamically regulated to match the cellular need of RNA stabilization and turnover.


Subject(s)
Adenine/chemistry , Gene Expression Regulation , MicroRNAs/metabolism , Polynucleotide Adenylyltransferase/metabolism , RNA Stability , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism , Adenine/metabolism , HEK293 Cells , Humans , MicroRNAs/genetics , Phosphorylation , Polynucleotide Adenylyltransferase/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Substrate Specificity , mRNA Cleavage and Polyadenylation Factors/genetics
7.
Front Bioeng Biotechnol ; 8: 619583, 2020.
Article in English | MEDLINE | ID: mdl-33537295

ABSTRACT

MiRNAs are small non-coding RNAs that interact with their target mRNAs for posttranscriptional gene regulation. Finely controlled miRNA biogenesis, target recognition and degradation indicate that maintaining miRNA homeostasis is essential for regulating cell proliferation, growth, differentiation and apoptosis. Increasingly, miRNAs have been recognized as a potential biomarker for disease diagnosis. MiRNAs can be found in blood, plasma, and tissues, and miRNA expression and activity differ in developmental stages, tissues and in response to external stimuli. MiRNA transcripts are matured from pri-miRNA over pre-miRNA to mature miRNA, a process that includes multiple steps and enzymes. Many tools are available to identify and quantify specific miRNAs, ranging from measuring total miRNA, specific miRNA activity, miRNA arrays and miRNA localization. The various miRNA assays differ in accuracy, cost, efficiency and convenience of monitoring miRNA dynamics. To acknowledge the significance and increasing research interest in miRNAs, we summarize the traditional as well as novel methods of miRNA quantification with strengths and limitations of various techniques in biochemical and medical research.

SELECTION OF CITATIONS
SEARCH DETAIL