Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38592886

ABSTRACT

Bacterial wilt (BW) of tomatoes, caused by Ralstonia solanacearum, is a devastating disease that results in large annual yield losses worldwide. Management of BW of tomatoes is difficult due to the soil-borne nature of the pathogen. One of the best ways to mitigate the losses is through breeding for disease resistance. Moreover, plant height (PH) is a crucial element related to plant architecture, which determines nutrient management and mechanical harvesting in tomatoes. An intraspecific F2 segregating population (NC 11212) of tomatoes was developed by crossing NC 84173 (tall, BW susceptible) × CLN1466EA (short, BW resistant). We performed quantitative trait loci (QTL) mapping using single nucleotide polymorphic (SNP) markers and the NC 11212 F2 segregating population. The QTL analysis for BW resistance revealed a total of three QTLs on chromosomes 1, 2, and 3, explaining phenotypic variation (R2) ranging from 3.6% to 14.9%, whereas the QTL analysis for PH also detected three QTLs on chromosomes 1, 8, and 11, explaining R2 ranging from 7.1% to 11%. This work thus provides information to improve BW resistance and plant architecture-related traits in tomatoes.

2.
Pathol Res Pract ; 256: 155226, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452585

ABSTRACT

Urologic cancers (UCs), which include bladder, kidney, and prostate tumors, account for almost a quarter of all malignancies. Long non-coding RNAs (lncRNAs) are tissue-specific RNAs that influence cell growth, death, and division. LncRNAs are dysregulated in UCs, and their abnormal expression may allow them to be used in cancer detection, outlook, and therapy. With the identification of several novel lncRNAs and significant exploration of their functions in various illnesses, particularly cancer, the study of lncRNAs has evolved into a new obsession. MALAT1 is a flexible tumor regulator implicated in an array of biological activities and disorders, resulting in an important research issue. MALAT1 appears as a hotspot, having been linked to the dysregulation of cell communication, and is intimately linked to cancer genesis, advancement, and response to treatment. MALAT1 additionally operates as a competitive endogenous RNA, binding to microRNAs and resuming downstream mRNA transcription and operation. This regulatory system influences cell growth, apoptosis, motility, penetration, and cell cycle pausing. MALAT1's evaluation and prognosis significance are highlighted, with a thorough review of its manifestation levels in several UC situations and its association with clinicopathological markers. The investigation highlights MALAT1's adaptability as a possible treatment target, providing fresh ways for therapy in UCs as we integrate existing information The article not only gathers current knowledge on MALAT1's activities but also lays the groundwork for revolutionary advances in the treatment of UCs.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Urologic Neoplasms , Humans , Male , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/genetics , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription, Genetic , Urologic Neoplasms/genetics , Urologic Neoplasms/therapy
3.
PLoS One ; 18(12): e0295551, 2023.
Article in English | MEDLINE | ID: mdl-38079392

ABSTRACT

Bacterial spot of tomato is a serious disease caused by at least four species and four races of Xanthomonas- X. euvesicatoria (race T1), X. vesicatoria (race T2), X. perforans (race T3 and T4), and X. gardneri, with X. perforans race T4 being predominant in the southeast USA. Practical management of this disease is challenging because of the need for more effective chemicals and commercially resistant cultivars. Identification of genetic resistance is the first step to developing a disease-resistant variety. The objective of this study was to identify quantitative trait loci (QTL) conferring resistance to race T4 in two independent recombinant inbred lines (RILs) populations NC 10204 (intra-specific) and NC 13666 (interspecific) developed by crossing NC 30P x NC22L-1(2008) and NC 1CELBR x PI 270443, respectively. Seven QTLs on chromosomes 2, 6, 7, 11, and 12 were identified in NC 10204. The QTL on chromosome 6 explained the highest percentage of phenotypic variance (up to 21.3%), followed by the QTL on chromosome 12 (up to 8.2%). On the other hand, the QTLs on chromosomes 1, 3, 4, 6, 7, 8, 9, and 11 were detected in NC 13666. The QTLs on chromosomes 6, 7, and 11 were co-located in NC 10204 and NC 13666 populations. The donor of the resistance associated with these QTL in NC 10204 is a released breeding line with superior horticultural traits. Therefore, both the donor parent and the QTL information will be useful in tomato breeding programs as there will be minimal linkage drag associated with the bacterial spot resistance.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Quantitative Trait Loci , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Breeding , Phenotype , Disease Resistance/genetics
4.
Cancers (Basel) ; 15(18)2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37760469

ABSTRACT

The genesis of cancer is a precisely organized process in which normal cells undergo genetic alterations that cause the cells to multiply abnormally, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Potential drugs that could modify these carcinogenic pathways are the ones that will be used in clinical trials as anti-cancer drugs. Resveratrol (RES) is a polyphenolic natural antitoxin that has been utilized for the treatment of several diseases, owing to its ability to scavenge free radicals, control the expression and activity of antioxidant enzymes, and have effects on inflammation, cancer, aging, diabetes, and cardioprotection. Although RES has a variety of pharmacological uses and shows promising applications in natural medicine, its unpredictable pharmacokinetics compromise its therapeutic efficacy and prevent its use in clinical settings. RES has been encapsulated into various nanocarriers, such as liposomes, polymeric nanoparticles, lipidic nanocarriers, and inorganic nanoparticles, to address these issues. These nanocarriers can modulate drug release, increase bioavailability, and reach therapeutically relevant plasma concentrations. Studies on resveratrol-rich nano-formulations in various cancer types are compiled in the current article. Studies relating to enhanced drug stability, increased therapeutic potential in terms of pharmacokinetics and pharmacodynamics, and reduced toxicity to cells and tissues are the main topics of this research. To keep the readers informed about the current state of resveratrol nano-formulations from an industrial perspective, some recent and significant patent literature has also been provided. Here, the prospects for nano-formulations are briefly discussed, along with machine learning and pharmacometrics methods for resolving resveratrol's pharmacokinetic concerns.

5.
Cancers (Basel) ; 15(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37627222

ABSTRACT

Mangiferin (MGF), a xanthone derived from Mangifera indica L., initially employed as a nutraceutical, is now being explored extensively for its anticancer potential. Scientists across the globe have explored this bioactive for managing a variety of cancers using validated in vitro and in vivo models. The in vitro anticancer potential of this biomolecule on well-established breast cancer cell lines such as MDA-MB-23, BEAS-2B cells and MCF-7 is closer to many approved synthetic anticancer agents. However, the solubility and bioavailability of this xanthone are the main challenges, and its oral bioavailability is reported to be less than 2%, and its aqueous solubility is also 0.111 mg/mL. Nano-drug delivery systems have attempted to deliver the drugs at the desired site at a desired rate in desired amounts. Many researchers have explored various nanotechnology-based approaches to provide effective and safe delivery of mangiferin for cancer therapy. Nanoparticles were used as carriers to encapsulate mangiferin, protecting it from degradation and facilitating its delivery to cancer cells. They have attempted to enhance the bioavailability, safety and efficacy of this very bioactive using drug delivery approaches. The present review focuses on the origin and structure elucidation of mangiferin and its derivatives and the benefits of this bioactive. The review also offers insight into the delivery-related challenges of mangiferin and its applications in nanosized forms against cancer. The use of a relatively new deep-learning approach to solve the pharmacokinetic issues of this bioactive has also been discussed. The review also critically analyzes the future hope for mangiferin as a therapeutic agent for cancer management.

6.
Hortic Res ; 10(6): uhad078, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37323233

ABSTRACT

Genome editing approaches, particularly the CRISPR/Cas9 technology, are becoming state-of-the-art for trait development in numerous breeding programs. Significant advances in improving plant traits are enabled by this influential tool, especially for disease resistance, compared to traditional breeding. One of the potyviruses, the turnip mosaic virus (TuMV), is the most widespread and damaging virus that infects Brassica spp. worldwide. We generated the targeted mutation at the eIF(iso)4E gene in the TuMV-susceptible cultivar "Seoul" using CRISPR/Cas9 to develop TuMV-resistant Chinese cabbage. We detected several heritable indel mutations in the edited T0 plants and developed T1 through generational progression. It was indicated in the sequence analysis of the eIF(iso)4E-edited T1 plants that the mutations were transferred to succeeding generations. These edited T1 plants conferred resistance to TuMV. It was shown with ELISA analysis the lack of accumulation of viral particles. Furthermore, we found a strong negative correlation (r = -0.938) between TuMV resistance and the genome editing frequency of eIF(iso)4E. Consequently, it was revealed in this study that CRISPR/Cas9 technique can expedite the breeding process to improve traits in Chinese cabbage plants.

7.
Front Plant Sci ; 14: 1135884, 2023.
Article in English | MEDLINE | ID: mdl-37324699

ABSTRACT

Early blight (EB), caused by Alternaria linariae (Neerg.) (syn. A. tomatophila) Simmons, is a disease that affects tomatoes (Solanum lycopersicum L.) throughout the world, with tremendous economic implications. The objective of the present study was to map the quantitative trait loci (QTL) associated with EB resistance in tomatoes. The F2 and F2:3 mapping populations consisting of 174 lines derived from NC 1CELBR (resistant) × Fla. 7775 (susceptible) were evaluated under natural conditions in the field in 2011 and in the greenhouse in 2015 by artificial inoculation. In all, 375 Kompetitive Allele Specific PCR (KASP) assays were used for genotyping parents and the F2 population. The broad-sense heritability estimate for phenotypic data was 28.3%, and 25.3% for 2011, and 2015 disease evaluations, respectively. QTL analysis revealed six QTLs associated with EB resistance on chromosomes 2, 8, and 11 (LOD 4.0 to 9.1), explaining phenotypic variation ranging from 3.8 to 21.0%. These results demonstrate that genetic control of EB resistance in NC 1CELBR is polygenic. This study may facilitate further fine mapping of the EB-resistant QTL and marker-assisted selection (MAS) to transfer EB resistance genes into elite tomato varieties, including broadening the genetic diversity of EB resistance in tomatoes.

8.
Front Plant Sci ; 13: 983625, 2022.
Article in English | MEDLINE | ID: mdl-36275542

ABSTRACT

The emergence of deep neural networks has allowed the development of fully automated and efficient diagnostic systems for plant disease and pest phenotyping. Although previous approaches have proven to be promising, they are limited, especially in real-life scenarios, to properly diagnose and characterize the problem. In this work, we propose a framework which besides recognizing and localizing various plant abnormalities also informs the user about the severity of the diseases infecting the plant. By taking a single image as input, our algorithm is able to generate detailed descriptive phrases (user-defined) that display the location, severity stage, and visual attributes of all the abnormalities that are present in the image. Our framework is composed of three main components. One of them is a detector that accurately and efficiently recognizes and localizes the abnormalities in plants by extracting region-based anomaly features using a deep neural network-based feature extractor. The second one is an encoder-decoder network that performs pixel-level analysis to generate abnormality-specific severity levels. Lastly is an integration unit which aggregates the information of these units and assigns unique IDs to all the detected anomaly instances, thus generating descriptive sentences describing the location, severity, and class of anomalies infecting plants. We discuss two possible ways of utilizing the abovementioned units in a single framework. We evaluate and analyze the efficacy of both approaches on newly constructed diverse paprika disease and pest recognition datasets, comprising six anomaly categories along with 11 different severity levels. Our algorithm achieves mean average precision of 91.7% for the abnormality detection task and a mean panoptic quality score of 70.78% for severity level prediction. Our algorithm provides a practical and cost-efficient solution to farmers that facilitates proper handling of crops.

9.
Des Monomers Polym ; 25(1): 165-174, 2022.
Article in English | MEDLINE | ID: mdl-35711622

ABSTRACT

Niosomes are multilamellar vesicles that efficiently deliver active substance into skin systemic circulation or skin layers. They are used in topical drug delivery system to enhance the skin permeation of active substance. So, the prime objective of this study was to develop a niosomal gel of fusidic acid to increase its skin permeation. Different formulations of niosomes of fusidic acid were designed by varying the cholesterol to surfactant ratio. Formulations containing fusidic acid, cholesterol, dihexadecyl pyridinium chloride, Span 60, or Tween 60 were prepared by thin film hydration method in rotary evaporator. The thin film formed in rotary flask was hydrated by phosphate buffer saline of pH 7.2. The niosomes formed were characterized through entrapment efficiency, size, polydispersity index (PDI), and zeta potential. The S3 formulation containing span 60 showed the highest entrapment efficiency (EE) of niosomes, so it was incorporated into Carbopol gel. Determination of pH, spreadability, rheological, and ex vivo permeation studies was conducted of niosomal gel. The results of ex vivo permeation studies showed high permeation of fusidic acid when gel was applied to an albino rat skin. According to the results and previous studies of niosomes, it can be concluded that niosomes enhanced the permeation of fusidic acid through the skin.

10.
PLoS One ; 17(2): e0264026, 2022.
Article in English | MEDLINE | ID: mdl-35176091

ABSTRACT

Disease caused by Pepper yellow leaf curl virus (PepYLCV) is one of the greatest threats to pepper (Capsicum spp.) cultivation in the tropics and subtropics. Resistance to PepYLCV was previously identified in a few Capsicum accessions, but no resistance QTLs have been mapped. This study aimed to elucidate the genetics of PepYLCV resistance in C. annuum L. Augmented inoculation by the viruliferous whitefly Bemisia tabaci was used to evaluate parental lines and an F2 segregating population derived from a cross between resistant C. annuum line LP97 and susceptible C. annuum line ECW30R. Final evaluation was performed six weeks after inoculation using a standardized 5-point scale (0 = no symptoms to 4 = very severe symptoms). A high-density linkage map was constructed using genotyping-by-sequencing (GBS) to identify single-nucleotide polymorphism (SNP) markers associated with PepYLCV resistance in the F2 population. QTL analysis revealed three QTLs, peplcv-1, peplcv-7, and peplcv-12, on chromosomes P1, P7, and P12, respectively. Candidate genes associated with PepYLCV resistance in the QTL regions were inferred. In addition, single markers Chr7-LCV-7 and Chr12-LCV-12 derived from the QTLs were developed and validated in another F2 population and in commercial varieties. This work thus provides not only information for mapping PepYLCV resistance loci in pepper but also forms the basis for future molecular analysis of genes involved in PepYLCV resistance.


Subject(s)
Begomovirus/physiology , Capsicum/genetics , Chromosomes, Plant/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Capsicum/immunology , Capsicum/virology , Chromosome Mapping , Disease Resistance/immunology , Genotype , Plant Diseases/immunology , Plant Diseases/virology
11.
Curr Drug Deliv ; 19(5): 534-546, 2022.
Article in English | MEDLINE | ID: mdl-34288836

ABSTRACT

INTRODUCTION: The pleiotropic effects of statins are recently explored for wound healing through angiogenesis and lymph-angiogenesis that could be of great importance in diabetic wounds. AIMS: The aim of the present study is to fabricate nanofilm embedded with simvastatin-loaded chitosan nanoparticles (CS-SIM-NPs) and to explore the efficacy of SIM in diabetic wound healing. METHODS: The NPs, prepared via ionic gelation, were 173 nm ± 2.645 in size with a zeta potential of -0.299 ± 0.009 and PDI 0.051 ± 0.088 with excellent encapsulation efficiency (99.97%). The optimized formulation (CS: TPP, 1:1) that exhibited the highest drug release (91.64%) was incorporated into the polymeric nanofilm (HPMC, Sodium alginate, PVA), followed by in vitro characterization. The optimized nanofilm was applied to the wound created on the back of diabetes-induced (with alloxan injection 120 mg/kg) albino rats. RESULTS: The results showed a significant (p < 0.05) improvement in the wound healing process compared to the diabetes-induced non-treated group. The results highlighted the importance of nanofilms loaded with SIM-NPs in diabetic wound healing through angiogenesis promotion at the wound site. CONCLUSION: Thus, CS-SIM-NPs loaded polymeric nanofilms could be an emerging diabetic wound healing agent in the industry of nanomedicines.


Subject(s)
Chitosan , Diabetes Mellitus , Nanoparticles , Animals , Polymers , Rats , Simvastatin/pharmacology , Wound Healing
12.
Crit Rev Ther Drug Carrier Syst ; 39(1): 33-64, 2022.
Article in English | MEDLINE | ID: mdl-34936317

ABSTRACT

Orodispersible films (ODFs) have served as an emerging platform for the delivery of drugs in a convenient way. They have numerous advantages, the significant one is simplicity of administration for special populations such as pediatric and geriatric as well as patients with swallowing difficulty. Besides, the advantages include accurate dosing and fast action. The ODFs are efficiently designed with detailed knowledge of drug and polymers as well as a suitable selection of method. Many conventional and advance formulation strategies have been used for the development of ODFs. The biopharmaceutical concerns of active pharmaceutical ingredients (APIs) are given in this review in light of the fact that ODFs can be utilized to increase the bioavailability of APIs. The basic critical issues such as good mechanical properties, water solubility of the API and taste masking are very important to be considered during the development of ODFs. The knowledge of critical quality concerns of ODFs will be helpful in the future development of ODF. As ODFs remain in the mouth until complete degradation, taste, texture and mouth-feel are the qualities that in all respects liable for acceptability of the patient. An assortment of packaging choices is also accessible for ODFs. This review focuses on the different critical concerns of ODF related to composition, bio-pharmaceutical, manufacturing, quality tests, packaging and acceptability. Additionally, potential barriers in the ODFs development are discussed in details. Therefore, this review is an informative bundle of ODFs concerns from the product development stage to the end-user acceptability.


Subject(s)
Drug Delivery Systems , Pharmaceutical Preparations , Administration, Oral , Aged , Child , Drug Compounding , Humans , Polymers , Solubility
13.
J Microencapsul ; 39(1): 37-48, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34919007

ABSTRACT

AIM: This work aims to formulate topical hybrid gel containing chitosan-coated moxifloxacin (MXF) HCl nanoparticles (NPs) with enhanced antibacterial and healing activity. METHODS: MXF HCl NPs prepared by the ionic gelation method were loaded onto a hybrid chitosan carbomer gel. Size analysis of the prepared NPs was performed using SEM and Zeta-sizer. Further characterisation was done using Fourier transforms infra-red spectroscopy (FTIR), X-ray diffraction (XRD), and Thermogravimetric analysis (TGA). Prepared gel was evaluated for its in vitro drug release, biocompatibility, antibacterial activity, and stability studies under storage conditions. In-vivo wound healing was measured by observing percentage reduction in wound. RESULTS: NPs have 359 ± 79 nm mean particle size, 31.01 mV zeta potential with 0.008 polydispersity index (PD1), 63.5% drug entrapment and 83 ± 3.5% drug release at pH 5.5. Hybrid chitosan carbomer gel showed good biocompatibility, antibacterial, in-vivo wound healing properties and stable properties. CONCLUSIONS: NP-loaded hybrid gel can be an effective treatment for acute and challenged topical wounds.


Subject(s)
Chitosan , Nanoparticles , Anti-Bacterial Agents/pharmacology , Drug Carriers , Drug Liberation , Moxifloxacin , Particle Size , Wound Healing
14.
Plants (Basel) ; 10(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34834630

ABSTRACT

Onion (2n = 2x = 16) has been a nutritional, medicinal and economically valuable vegetable crop all over the world since ancient times. To accelerate the molecular breeding in onion, genetic linkage maps are prerequisite. However, construction of genetic linkage maps of onion remains relatively rudimentary due to a large genome (about 16.3 Gbp) as well as biennial life cycle, cross-pollinated nature, and high inbreeding depression. In this study, we constructed single nucleotide polymorphism (SNP)-based genetic linkage map of onion in an F2 segregating population derived from a cross between the doubled haploid line '16P118' and inbred line 'Sweet Green' through genotyping by sequencing (GBS). A total of 207.3 Gbp of raw sequences were generated using an Illumina HiSeq X system, and 24,341 SNPs were identified with the criteria based on three minimum depths, lower than 30% missing rate, and more than 5% minor allele frequency. As a result, an onion genetic linkage map consisting of 216 GBS-based SNPs were constructed comprising eight linkage groups spanning a genetic length of 827.0 cM. Furthermore, we identified the quantitative trait loci (QTLs) for the sucrose, glucose, fructose, and total sugar content across the onion genome. We identified a total of four QTLs associated with sucrose (qSC4.1), glucose (qGC5.1), fructose (qFC5.1), and total sugar content (qTSC5.1) explaining the phenotypic variation (R2%) ranging from 6.07-11.47%. This map and QTL information will contribute to develop the molecular markers to breed the cultivars with high sugar content in onion.

15.
Pak J Pharm Sci ; 34(3(Supplementary)): 1045-1055, 2021 May.
Article in English | MEDLINE | ID: mdl-34602431

ABSTRACT

In the present study nanotechnology approach, i.e., a cyclodextrin (CD) based carbonate nanosponge was used to improve the solubility and dissolution of ibuprofen. Solvent and ultrasound assisted methods were used to prepare nanosponges using two CDs (ß-CD and 2-hydroxypropyl-ß-CD (2HP-ß-CD)) and a cross-linker (CL) diphenyl carbonate (DPC) in varying molar ratios. Nanosponges were investigated for their solubilizing efficiency and phase solubility studies. Structural analysis by Fourier transform infrared (FTIR) and powder X-ray diffraction (PXRD), thermo-analytical characterization by differential scanning calorimetry (DCS), morphology by scanning electron microscopy (SEM). In-vitro drug release followed by in-vivo analgesic and anti-inflammatory studies were performed. 2HP-ß-CD based nanosponges (molar ratio 0.01:0.04) prepared by ultrasound assisted method showed the highest solubilizing efficiency (i.e., 4.28 folds). Stability constant values showed that all complexes were stable. Inclusion complexes of drug was confirmed by PXRD and DSC. SEM images showed porous structures confirming the formation of cross-linked network. Particle size was in the range of 296.8±64 to 611.7±32nm. In-vitro release studies showed enhanced dissolution profile from nanosponge formulation (~94% from I11) as compared to the pure drug (~45% Ibuprofen) in 120min. Significant (p<0.05) extent of pain inhibition and anti-inflammatory activity was observed for nanosponge formulation when compared with the pure drug. CD based carbonate nanosponges with better solubility, enhanced release profile, improved analgesic and anti-inflammatory activity were successfully formulated for ibuprofen.


Subject(s)
Carbonates , Cyclodextrins , Drug Liberation , Ibuprofen/pharmacokinetics , Nanostructures , Nociception/drug effects , Animals , Calorimetry, Differential Scanning , Ibuprofen/administration & dosage , Ibuprofen/pharmacology , Microscopy, Electron, Scanning , Nanoparticle Drug Delivery System , Nanotechnology , Powder Diffraction , Rats , Solubility , Spectroscopy, Fourier Transform Infrared
16.
Front Microbiol ; 12: 694136, 2021.
Article in English | MEDLINE | ID: mdl-34484141

ABSTRACT

Phytophthora capsici is an oomycete pathogen responsible for damping off, root rot, fruit rot, and foliar blight in popular vegetable and legume crops. The existence of distinct aggressiveness levels and physiological races among the P. capsici population is a major constraint to developing resistant varieties of host crops. In the present study, we compared the genomes of three P. capsici isolates with different aggressiveness levels to reveal their genomic differences. We obtained genome sequences using short-read and long-read technologies, which yielded an average genome size of 76 Mbp comprising 514 contigs and 15,076 predicted genes. A comparative genomic analysis uncovered the signatures of accelerated evolution, gene family expansions in the pathogenicity-related genes among the three isolates. Resequencing two additional P. capsici isolates enabled the identification of average 1,023,437 SNPs, revealing the frequent accumulation of non-synonymous substitutions in pathogenicity-related gene families. Furthermore, pathogenicity-related gene families, cytoplasmic effectors and ATP binding cassette (ABC) transporters, showed expansion signals in the more aggressive isolates, with a greater number of non-synonymous SNPs. This genomic information explains the plasticity, difference in aggressiveness levels, and genome structural variation among the P. capsici isolates, providing insight into the genomic features related to the evolution and pathogenicity of this oomycete pathogen.

17.
Front Plant Sci ; 12: 675474, 2021.
Article in English | MEDLINE | ID: mdl-34262581

ABSTRACT

The orientation of fruits is a distinguishing morphological feature of pepper (Capsicum spp.) varieties. The pendent (downward curved) growth of the fruit stalks, known as pedicels, is highly correlated with fruit weight and pedicel length. A previous genetic analysis revealed that the pendent fruit orientation is governed by a dominant gene, and incomplete inheritance is also observed in some Capsicum accessions. To identify and localize this gene, a single quantitative trait locus (QTL) analysis was performed on one F2 and two recombinant inbred line (RIL) populations, and a genome-wide association study (GWAS) was performed using a core collection. Common QTL regions associated with fruit orientation were detected on chromosome 12. A total of 187,966 SNPs were identified in a genotyping-by-sequencing (GBS) for GWAS analysis of 196 Capsicum annuum, 25 Capsicum baccatum, 21 Capsicum chinense, and 14 Capsicum frutescens accessions, representing the germplasm collection of South Korea. The results of these analyses enabled us to narrow down the CapUp region of interest to 200-250 Mbp on chromosome 12. Seven candidate genes were found to be located between two markers that were completely cosegregated with the fruit orientation phenotype. The findings and markers developed in this study will be helpful for additional understanding of pepper fruit development and breeding for fruit orientation.

18.
Plants (Basel) ; 10(3)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800297

ABSTRACT

Watermelon (Citrulluslanatus) is an economically important fruit crop worldwide. Gummy stem blight (GSB) is one of the most damaging diseases encountered during watermelon cultivation. In the present study, we identified quantitative trait loci (QTLs) associated with GSB resistance in an F2 population derived from a cross between maternal-susceptible line '920533' (C. lanatus) and the paternal-resistant line 'PI 189225' (C. amarus). The resistance of 178 F2 plants was assessed by two different evaluation methods, including leaf lesion (LL) and stem blight (SB). To analyze the QTLs associated with GSB resistance, a linkage map was constructed covering a total genetic distance of 1070.2 cM. QTL analysis detected three QTLs associated with GSB resistance on chromosome 8 and 6. Among them, two QTLs, qLL8.1 and qSB8.1 on chromosome 8 identified as major QTLs, explaining 10.5 and 10.0% of the phenotypic variations localizing at same area and sharing the same top markers for both LL and SB traits, respectively. A minor QTL, qSB6.1, explains 9.7% of phenotypic variations detected on chromosome 6 only for the SB trait. High-throughput markers were developed and validated for the selection of resistant QTLs using watermelon accessions, and commercial cultivars. Four potential candidate genes were predicted associated with GSB resistance based on the physical location of flanking markers on chromosome 8. These findings will be helpful for the development of watermelon cultivars resistant to GSB.

19.
Front Plant Sci ; 12: 604709, 2021.
Article in English | MEDLINE | ID: mdl-33664756

ABSTRACT

Phytophthora blight (PB) caused by Phytophthora nicotianae is a highly destructive disease in sesame (Sesamum indicum L.). In this study, we used linkage mapping and genome-wide association study (GWAS) to identify quantitative trait loci (QTL) and candidate genes associated with PB resistance. The QTL mapping in 90 RILs of the Goenbaek × Osan cross using genotyping-by-sequencing detected significant QTLs for PB resistance on chromosome 10, explaining 12.79%-13.34% of phenotypic variation. Association of this locus to PB resistance was also revealed through bulked segregant analysis in second RIL population (Goenbaek × Milsung cross) comprising 188 RILs. The GWAS of 87 sesame accessions evaluated against three P. nicotianae isolates identified 29 SNPs on chromosome 10 significantly associated with PB resistance. These SNPs were located within a 0.79 Mb region, which co-located with the QTL intervals identified in RIL populations, and hence scanned for identifying candidate genes. This region contained several defense-related candidate R genes, five of which were selected for quantitative expression analysis. One of these genes, SIN_1019016 was found to show significantly higher expression in the resistant parent compared to that in the susceptible parents and selected RILs. Paired-end sequencing of the gene SIN_1019016 in parental cultivars revealed two synonymous SNPs between Goenbaek and Osan in exon 2 of coding DNA sequence. These results suggested SIN_1019016 as one of the candidate gene conferring PB resistance in sesame. The findings from this study will be useful in the marker-assisted selection as well as the functional analysis of PB resistance candidate gene(s) in sesame.

20.
Drug Dev Ind Pharm ; 46(12): 2070-2080, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33112681

ABSTRACT

Patients suffering from dysphagia have trouble in swallowing conventional oral dosage forms and there is also risk of choking, which may cause patient noncompliance. This study aimed to develop an orodispersible film (ODF) containing cefixime trihydrate (CFX) to cope with the above-mentioned problems as well as to enhance water solubility and masking the bitter taste of the drug. The freeze-drying and kneading methods were used for the formation of inclusion complexes. The physicochemical evaluation revealed that T7 was the best film for the incorporation of pure drug and inclusion complexes. Films were further characterized for physical and mechanical properties. Drug content, dissolving time of the film and drug release tests were performed. In vivo taste and disintegration time studies were also conducted in healthy human volunteers. FTIR spectra of the individual ingredients and prepared formulations have confirmed the chemical compatibilities of the ingredients. The solubility of CFX was increased by complexation with ß-CD and optimized freeze-dried inclusion complex (FD1) was selected for the formation of ODF. C4 was selected as an optimized film for the delivery of CFX as this film has released 95.52% drug at the end of 10 min. Dissolution kinetics of FD1 showed that it followed zero-order kinetics while drug release from films, exhibits first-order kinetics; however, both showed non-Fickian transport. In vivo taste evaluation revealed that taste was masked by inclusion complexation with ß-CD. However, selected ingredients and employed methodology enabled to formulate film, capable of delivering taste-masked CFX with improved solubility and better patient compliance.


Subject(s)
Cefixime/chemistry , Taste , Administration, Oral , Drug Compounding , Drug Liberation , Humans , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...