Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(1): 149-159, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35036686

ABSTRACT

The ever-growing exploitation of pesticides and their lethal effects on living beings have made it a dire need of the day to develop an accurate and reliable approach for their monitoring at trace levels. The designing of an enzyme-free electrocatalyst to electrochemically detect the pesticide residues is currently gaining much importance. In this study, a novel redox-sensing film was constructed successfully based on cobalt-substituted Dawson-type polyoxometalate [P2W17O61 (Co2+·OH2)]7- (Co-POM) and polyethylene imine (PEI)-capped silver nanoparticles (AgNPs). A nanohybrid assembly was fabricated on a glassy carbon electrode's surface by alternately depositing Co-POM and PEI-AgNPs using the layer-by-layer self-assembly method. The surface morphology of the immobilized CoPOM/AgNP multilayer nanoassembly was analyzed through scanning electron microscopy along with energy-dispersive spectroscopy for elemental analysis. The redox properties and surface morphologies of fabricated assemblies were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The practicability and feasibility of the proposed sensing layer was tested for the detection of a highly toxic insecticide, that is, carbofuran. The fabricated sensor exhibited a limit of detection of 0.1 mM with a sensitivity of 13.11 µA mM-1 for carbofuran. The results depicted that the fabricated nonenzymatic hybrid film showed excellent electrocatalytic efficiency for the carbofuran oxidation. Furthermore, the obtained value of "apparent Km", that is, 0.4 mM, illustrates a good electro-oxidation activity of the sensor for the detection of carbofuran. The exceptionally stable redox activity of Co-POM, high surface area and greater conductivity of AgNPs, and the synergistic effect of all components of the film resulted in an excellent analytical performance of the proposed sensing assembly. This work provides a new direction to the progress and designing of nonenzymatic electrochemical sensors for pesticide determination in real samples.

2.
Dis Model Mech ; 10(2): 105-118, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28067622

ABSTRACT

A consanguineous family from Pakistan was ascertained to have a novel deafness-dystonia syndrome with motor regression, ichthyosis-like features and signs of sensory neuropathy. By applying a combined strategy of linkage analysis and whole-exome sequencing in the presented family, a homozygous nonsense mutation, c.4G>T (p.Glu2*), in FITM2 was identified. FITM2 and its paralog FITM1 constitute an evolutionary conserved protein family involved in partitioning of triglycerides into cellular lipid droplets. Despite the role of FITM2 in neutral lipid storage and metabolism, no indications for lipodystrophy were observed in the affected individuals. In order to obtain independent evidence for the involvement of FITM2 in the human pathology, downregulation of the single Fitm ortholog, CG10671, in Drosophila melanogaster was pursued using RNA interference. Characteristics of the syndrome, including progressive locomotor impairment, hearing loss and disturbed sensory functions, were recapitulated in Drosophila, which supports the causative nature of the FITM2 mutation. Mutation-based genetic counseling can now be provided to the family and insight is obtained into the potential impact of genetic variation in FITM2.


Subject(s)
Deaf-Blind Disorders/genetics , Drosophila Proteins/genetics , Dystonia/genetics , Ichthyosis/genetics , Intellectual Disability/genetics , Membrane Proteins/genetics , Motor Activity , Mutation/genetics , Optic Atrophy/genetics , Sensory Receptor Cells/pathology , Adiposity , Animals , Audiometry, Pure-Tone , Base Sequence , Child , Codon, Nonsense/genetics , Deaf-Blind Disorders/blood , Deaf-Blind Disorders/physiopathology , Disease Models, Animal , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Dystonia/blood , Dystonia/physiopathology , Female , Gene Expression Regulation , Gene Knockdown Techniques , HEK293 Cells , Hearing Loss/genetics , Homozygote , Humans , Ichthyosis/complications , Ichthyosis/physiopathology , Intellectual Disability/blood , Intellectual Disability/physiopathology , Lipid Droplets/metabolism , Liver/metabolism , Locomotion , Male , Membrane Proteins/metabolism , Optic Atrophy/blood , Optic Atrophy/physiopathology , Pedigree , Exome Sequencing , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL