Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(9): e19454, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37662819

ABSTRACT

P-glycoprotein (P-gp) is known as the "multidrug resistance protein" because it contributes to tumor resistance to several different classes of anticancer drugs. The effectiveness of such polymers in treating cancer and delivering drugs has been shown in a wide range of in vitro and in vivo experiments. The primary objective of the present study was to investigate the inhibitory effects of several naturally occurring polymers on P-gp efflux, as it is known that P-gp inhibition can impede the elimination of medications. The objective of our study is to identify polymers that possess the potential to inhibit P-gp, a protein involved in drug resistance, with the aim of enhancing the effectiveness of anticancer drug formulations. The ADMET profile of all the selected polymers (Agarose, Alginate, Carrageenan, Cyclodextrin, Dextran, Hyaluronic acid, and Polysialic acid) has been studied, and binding affinities were investigated through a computational approach using the recently released crystal structure of P-gp with PDB ID: 7O9W. The advanced computational study was also done with the help of molecular dynamics simulation. The aim of the present study is to overcome MDR resulting from the activity of P-gp by using such polymers that can inhibit P-gp when used in formulations. The docking scores of native ligand, Agarose, Alginate, Carrageenan, Chitosan, Cyclodextrin, Dextran, Hyaluronic acid, and Polysialic acid were found to be -10.7, -8.5, -6.6, -8.7, -8.6, -24.5, -6.7, -8.3, and -7.9, respectively. It was observed that, Cyclodextrin possess multiple properties in drug delivery science and here also demonstrated excellent binding affinity. We propose that drug efflux-related MDR may be prevented by the use of Agarose, Carregeenan, Chitosan, Cyclodextrin, Hyaluronic acid, and/or Polysialic acid in the administration of anticancer drugs.

2.
Gels ; 9(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37623124

ABSTRACT

Nanocomposite polymeric gels infused with fluorescent nanoparticles have surfaced as a propitious category of substances for biomedical purposes owing to their exceptional characteristics. The aforementioned materials possess a blend of desirable characteristics, including biocompatibility, biodegradability, drug encapsulation, controlled release capabilities, and optical properties that are conducive to imaging and tracking. This paper presents a comprehensive analysis of the synthesis and characterization of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels, as well as their biomedical applications, such as drug delivery, imaging, and tissue engineering. In this discourse, we deliberate upon the merits and obstacles linked to these substances, encompassing biocompatibility, drug encapsulation, optical characteristics, and scalability. The present study aims to provide an overall evaluation of the potential of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels for biomedical applications. Additionally, emerging trends and future directions for research in this area are highlighted.

3.
Prog Biophys Mol Biol ; 184: 1-12, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37652186

ABSTRACT

Quantum dots (QDs) are a class of remarkable materials that have garnered significant attention since their initial discovery. It is noteworthy to mention that it took approximately a decade for these materials to be successfully implemented in practical applications. While QDs have demonstrated notable optical properties, it is important to note that these attributes alone have not rendered them a feasible substitute for traditional organic dyes. Furthermore, it is worth noting that the substance under investigation exhibited inherent toxicity and instability in its initial state, primarily due to the presence of a heavy metal core. In the initial stages of research, it was observed that the integration of nanocomposites had a positive impact on the properties of QDs. The discovery of these nanocomposites was motivated by the remarkable properties exhibited by biocomposites found in nature. Recent discoveries have shed light on the potential utilization of QDs as a viable strategy for drug delivery, offering a promising avenue to enhance the efficacy of current pharmaceuticals and pave the way for the creation of innovative therapeutic approaches. The primary objective of this review was to elucidate the distinctive characteristics that render QDs highly suitable for utilization as nanocarriers. In this study, we will delve into the multifaceted applications of QDs as sensing nanoprobes and their utilization in diverse drug delivery systems. The focus of our investigation was directed toward the utilization of QD/polymer composites in sensing applications, with particular emphasis on their potential as chemical sensors, biosensors, and physical sensors.


Subject(s)
Biosensing Techniques , Quantum Dots , Quantum Dots/chemistry , Drug Delivery Systems , Coloring Agents , Pharmaceutical Preparations
4.
Front Cell Dev Biol ; 11: 1139671, 2023.
Article in English | MEDLINE | ID: mdl-37025169

ABSTRACT

Quantum dots are the serendipitous outcome of materials research. It is the tiny carbonaceous nanoparticles with diameters ranging from 1 to 10 nm. This review is a brief discussion of the synthesis, properties, and biomedical applicability of quantum dots, especially in herbal therapy. As quantum dots are highly polar, they can be surface decorated with several kinds of polar functionalities, such as polymeric molecules, small functional molecules, and so on. The review also consists of the basic physical and optical properties of quantum dots and their excitation-dependent properties in the application section. We focus on therapeutics, where quantum dots are used as drugs or imaging probes. Nanoprobes for several diagnostics are quite new in the biomedical research domain. Quantum dot-based nanoprobes are in high demand due to their excellent fluorescence, non-bleaching nature, biocompatibility, anchoring feasibility for several analytes, and fast point-of-care sensibility. Lastly, we also included a discussion on quantum dot-based drug delivery as phytomedicine.

5.
Brain Sci ; 13(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36979267

ABSTRACT

Numerous factors can contribute to the development of neurodegenerative disorders (NDs), such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Oxidative stress (OS), a fairly common ND symptom, can be caused by more reactive oxygen species being made. In addition, the pathological state of NDs, which includes a high number of protein aggregates, could make chronic inflammation worse by activating microglia. Carotenoids, often known as "CTs", are pigments that exist naturally and play a vital role in the prevention of several brain illnesses. CTs are organic pigments with major significance in ND prevention. More than 600 CTs have been discovered in nature, and they may be found in a wide variety of creatures. Different forms of CTs are responsible for the red, yellow, and orange pigments seen in many animals and plants. Because of their unique structure, CTs exhibit a wide range of bioactive effects, such as anti-inflammatory and antioxidant effects. The preventive effects of CTs have led researchers to find a strong correlation between CT levels in the body and the avoidance and treatment of several ailments, including NDs. To further understand the connection between OS, neuroinflammation, and NDs, a literature review has been compiled. In addition, we have focused on the anti-inflammatory and antioxidant properties of CTs for the treatment and management of NDs.

6.
Molecules ; 28(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36770672

ABSTRACT

Recent research on dipeptidyl peptidase-IV (DPP-IV) inhibitors has made it feasible to treat type 2 diabetes mellitus (T2DM) with minimal side effects. Therefore, in the present investigation, we aimed to discover and develop some coumarin-based sulphonamides as potential DPP-IV inhibitors in light of the fact that molecular hybridization of many bioactive pharmacophores frequently results in synergistic activity. Each of the proposed derivatives was subjected to an in silico virtual screening, and those that met all of the criteria and had a higher binding affinity with the DPP-IV enzyme were then subjected to wet lab synthesis, followed by an in vitro biological evaluation. The results of the pre-ADME and pre-tox predictions indicated that compounds 6e, 6f, 6h, and 6m to 6q were inferior and violated the most drug-like criteria. It was observed that 6a, 6b, 6c, 6d, 6i, 6j, 6r, 6s, and 6t displayed less binding free energy (PDB ID: 5Y7H) than the reference inhibitor and demonstrated drug-likeness properties, hence being selected for wet lab synthesis and the structures being confirmed by spectral analysis. In the in vitro enzyme assay, the standard drug Sitagliptin had an IC50 of 0.018 µM in the experiment which is the most potent. All the tested compounds also displayed significant inhibition of the DPP-IV enzyme, but 6i and 6j demonstrated 10.98 and 10.14 µM IC50 values, respectively, i.e., the most potent among the synthesized compounds. Based on our findings, we concluded that coumarin-based sulphonamide derivatives have significant DPP-IV binding ability and exhibit optimal enzyme inhibition in an in vitro enzyme assay.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Humans , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Molecular Docking Simulation , Sulfonamides/pharmacology , Sulfonamides/chemistry , Dipeptidyl Peptidase 4/chemistry , Enzyme Assays
7.
Molecules ; 28(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36677558

ABSTRACT

The present work describes the design and development of seventeen pyrimidine-clubbed benzimidazole derivatives as potential dihydrofolate reductase (DHFR) inhibitors. These compounds were filtered by using ADMET, drug-likeness characteristics calculations, and molecular docking experiments. Compounds 27, 29, 30, 33, 37, 38, and 41 were chosen for the synthesis based on the results of the in silico screening. Each of the synthesized compounds was tested for its in vitro antibacterial and antifungal activities using a variety of strains. All the compounds showed antibacterial properties against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus pyogenes) as well as Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Most of the compounds either had a higher potency than chloramphenicol or an equivalent potency to ciprofloxacin. Compounds 29 and 33 were effective against all the bacterial and fungal strains. Finally, the 1,2,3,4-tetrahydropyrimidine-2-thiol derivatives with a 6-chloro-2-(chloromethyl)-1H-benzo[d]imidazole moiety are potent enough to be considered a promising lead for the discovery of an effective antibacterial agent.


Subject(s)
Folic Acid Antagonists , Folic Acid Antagonists/pharmacology , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Benzimidazoles/pharmacology , Drug Resistance, Microbial , Pyrimidines/pharmacology , Structure-Activity Relationship , Microbial Sensitivity Tests , Molecular Structure
8.
Pathogens ; 11(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36365047

ABSTRACT

Cerebral malaria (CM) is a severe manifestation of parasite infection caused by Plasmodium species. In 2018, there were approximately 228 million malaria cases worldwide, resulting in about 405,000 deaths. Survivors of CM may live with lifelong post-CM consequences apart from an increased risk of childhood neurodisability. EphA2 receptors have been linked to several neurological disorders and have a vital role in the CM-associated breakdown of the blood-brain barrier. Molecular docking (MD) studies of phytochemicals from Taraxacum officinale, Tinospora cordifolia, Rosmarinus officinalis, Ocimum basilicum, and the native ligand ephrin-A were conducted to identify the potential blockers of the EphA2 receptor. The software program Autodock Vina 1.1.2 in PyRx-Virtual Screening Tool and BIOVIA Discovery Studio visualizer was used for this MD study. The present work showed that blocking the EphA2 receptor by these phytochemicals prevents endothelial cell apoptosis by averting ephrin-A ligand-expressing CD8+ T cell bioadhesion. These phytochemicals showed excellent docking scores and binding affinity, demonstrating hydrogen bond, electrostatic, Pi-sigma, and pi alkyl hydrophobic binding interactions when compared with native ligands at the EphA2 receptor. The comparative MD study using two PDB IDs showed that isocolumbin, carnosol, luteolin, and taraxasterol have better binding affinities (viz. -9.3, -9.0, -9.5, and -9.2 kcal/mol, respectively). Ocimum basilicum phytochemicals showed a lower docking score but more binding interactions than native ligands at the EphA2 receptor for both PDB IDs. This suggests that these phytochemicals may serve as potential drug candidates in the management of CM. We consider that the present MD study provides leads in drug development by targeting the EphA2 receptor in managing CM. The approach is innovative because a role for EphA2 receptors in CM has never been highlighted.

9.
Article in English | MEDLINE | ID: mdl-36056855

ABSTRACT

Previous reviews of the works on magnetic nanoparticles for hyperthermia induced treatment concentrated mostly on magnetic fluid hyperthermia (MFH) employing monometallic/metal oxide nanocomposites. In the literature, the word "hyperthermia" was also limited to the use of heat for medicinal purposes. A number of publications have recently been published demonstrating that magnetic nanoparticle-based hyperthermia may produce restricted high temperatures, resulting in the release of medicines that are either connected to the magnetic nanoparticles or encased in polymer matrices. In this debate, we propose broadening the concept of "hyperthermia" to encompass temperature-based treatment as well as magnetically controlled medication delivery. The review also addresses core-shell magnetic nanomaterials, particularly nanoshells made by stacked assembly, for the use of hyperthermia-based treatment and precise administration of drugs. The primary objective of this review article is to demonstrate how the combination of hyperthermia-induced therapy and 'on demand' drug release models may lead to effective applications in personalized medicine.

10.
Molecules ; 27(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36144735

ABSTRACT

Dipeptidyl peptidase-IV (DPP-IV) inhibitors, often known as gliptins, have been used to treat type 2 diabetes mellitus (T2DM). They may be combined with other medications as an additional treatment or used alone as a monotherapy. In addition to insulin, sulfonylureas, thiazolidinediones, and metformin, these molecules appear as possible therapeutic options. Oxadiazole rings have been employed in numerous different ways during drug development efforts. It has been shown that including them in the pharmacophore increases the amount of ligand that may be bound. The exceptional hydrogen bond acceptor properties of oxadiazoles and the distinct hydrocarbon bonding potential of their regioisomers have been established. Beside their anti-diabetic effects, oxadiazoles display a wide range of pharmacological properties. In this study, we made the assumption that molecules containing oxadiazole rings may afford a different approach to the treatment of diabetes, not only for controlling glycemic levels but also for preventing atherosclerosis progression and other complications associated with diabetes. It was observed that oxadiazole fusion with benzothiazole, 5-(2,5,2-trifluoroethoxy) phenyl, ß-homophenylalanine, 2-methyl-2-{5-(4-chlorophenyl), diamine-bridged bis-coumarinyl, 5-aryl-2-(6'-nitrobenzofuran-2'-yl), nitrobenzofuran, and/or oxindole leads to potential anti-diabetic activity.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Metformin , Thiazolidinediones , Benzothiazoles/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diamines , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Ligands , Metformin/therapeutic use , Oxadiazoles/pharmacology , Oxadiazoles/therapeutic use , Oxindoles , Thiazolidinediones/therapeutic use
11.
Ann Med Surg (Lond) ; 82: 104595, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36124209

ABSTRACT

Ethosomal systems are newer lipid vesicular carriers that have been around for 20 years, but over that period they have grown significantly as a means of transdermal drug delivery. They have a sizable amount of ethanol in them. These nanocarriers carry medicinal substances with various physicochemical qualities throughout the skin and deep skin layers. Since they were created in 1996, ethosomes have undergone substantial investigation; new substances have been added to their original composition, creating new varieties of ethosomal systems. These innovative carriers, which can be added to gels, patches, and lotions, are prepared using several novel methods. In addition to clinical trials, many in vivo models are employed to assess the effectiveness of dermal/transdermal administration. This review focuses on different generation of ethosomes and their comparison with other conventional liposomes.

12.
Life (Basel) ; 12(7)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35888142

ABSTRACT

One of the most significant challenges of diabetes health care is diabetic foot ulcers (DFU). DFUs are more challenging to cure, and this is particularly true for people who already have a compromised immune system. Pathogenic bacteria and fungi are becoming more resistant to antibiotics, so they may be unable to fight microbial infections at the wound site with the antibiotics we have now. This article discusses the dressings, topical antibacterial treatment, medications and debridement techniques used for DFU and provides a deep discussion of DFU and its associated problems. English-language publications on DFU were gathered from many different databases, such as Scopus, Web of Science, Science Direct, Springer Nature, and Google Scholar. For the treatment of DFU, a multidisciplinary approach involving the use of diagnostic equipment, skills, and experience is required. Preventing amputations starts with patient education and the implementation of new categorization systems. The microbiota involved in DFU can be better understood using novel diagnostic techniques, such as the 16S-ribosomal DNA sequence in bacteria. This could be achieved by using new biological and molecular treatments that have been shown to help prevent infections, to control local inflammation, and to improve the healing process.

13.
Antibiotics (Basel) ; 12(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36671248

ABSTRACT

We created thiazole and oxazole analogues of diaminopimelic acid (DAP) by replacing its carboxyl groups and substituting sulphur for the central carbon atom. Toxicity, ADME, molecular docking, and in vitro antimicrobial studies of the synthesized compounds were carried out. These compounds displayed significant antibacterial efficacy, with MICs of 70-80 µg/mL against all tested bacteria. Comparative values of the MIC, MBC, and ZOI of the synthesized compound were noticed when compared with ciprofloxacin. At 200 µg/mL, thio-DAP (1) had a ZOI of 22.67 ± 0.58, while ciprofloxacin had a ZOI of 23.67 ± 0.58. To synthesize thio-DAP (1) and oxa-DAP (2), l-cysteine was used as a precursor for the L-stereocenter (l-cysteine), which is recognized by the dapF enzyme's active site and selectively binds to the ligand's L-stereocenter. Docking studies of these compounds were carried out using the programme version 11.5 Schrodinger to reveal the hydrophobic and hydrophilic properties of these complexes. The docking scores of compounds one and two were -9.823 and -10.098 kcal/mol, respectively, as compared with LL-DAP (-9.426 kcal/mol.). This suggests that compounds one and two interact more precisely with dapF than LL-DAP. Chemicals one and two were synthesized via the SBDD (structure-based drug design) approach and these act as inhibitors of the dapF in the lysine pathway of bacterial cell wall synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...