Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 12: 1327113, 2024.
Article in English | MEDLINE | ID: mdl-38312346

ABSTRACT

Biosurfactants have garnered increased attention lately due to their superiority of their properties over fossil-derived counterparts. While the cost of production remains a significant hurdle to surpass synthetic surfactants, biosurfactants have been anticipated to gain a larger market share in the coming decades. Among these, glycolipids, a type of low-molecular-weight biosurfactant, stand out for their efficacy in reducing surface and interfacial tension, which made them highly sought-after for various surfactant-related applications. Glycolipids are composed of hydrophilic carbohydrate moieties linked to hydrophobic fatty acid chains through ester bonds that mainly include rhamnolipids, trehalose lipids, sophorolipids, and mannosylerythritol lipids. This review highlights the current landscape of glycolipids and covers specific glycolipid productivity and the diverse range of products found in the global market. Applications such as bioremediation, food processing, petroleum refining, biomedical uses, and increasing agriculture output have been discussed. Additionally, the latest advancements in production cost reduction for glycolipid and the challenges of utilizing second-generation feedstocks for sustainable production are also thoroughly examined. Overall, this review proposes a balance between environmental advantages, economic viability, and societal benefits through the optimized integration of secondary feedstocks in biosurfactant production.

2.
Environ Pollut ; 344: 123387, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38242308

ABSTRACT

This communication explores the intricate relationship between food waste and climate change, considering aspects such as impacts, projections, and emissions. It focuses on the pressing issue of waste generation and its potential consequences if current trends persist, and emphasises the importance of efficient solid waste management in improving environmental quality and fostering economic development. It also highlights the challenges faced by developing countries in waste collection and disposal, drawing comparisons with the waste utilisation methods used by developed nations. The review delves into the link between food waste and climate change, noting the paradoxical situation of food wastage against the backdrop of global hunger and malnutrition. It underscores the scientific evidence connecting food waste to climate change and its implications for food security and climate systems. Additionally, it examines the environmental burden imposed by food waste, including its contribution to greenhouse gas emissions and the depletion of resources such as energy, water, and land. Besides environmental concerns, this communication also highlights the ethical and socioeconomic dimensions of food waste, discussing its influence on Sustainable Development Goals, poverty, and social inequality. The communication concludes by advocating for collective action and the development of successful mitigation strategies, technological solutions, and policy interventions to address food waste and its climate impacts. It emphasises the need for collaboration, awareness, and informed decision-making to ensure a more sustainable and equitable future.


Subject(s)
Climate Change , Refuse Disposal , Food , Food Loss and Waste , Gap Junctions
3.
Chemosphere ; 351: 141208, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219986

ABSTRACT

Plastics are indispensable in modern society but also pose a persistent threat to the environment. In particular, microplastics (MPs) have a substantial environmental impact on ecosystems. Municipal solid waste landfill leachates are a source of MPs, but leakage of MPs from leachates has only been reported in a few studies. As a modern city, Hong Kong has a remarkably high population density and a massive plastic waste generation. However, it depends on conventional landfilling for plastic waste management and traditional thermal ammonia stripping for leachate treatment. Yet, the MP leakage from landfill leachates in Hong Kong has not been disclosed. This is the first study that aimed to identify, quantify, and characterise MPs in raw and treated leachates, respectively, from major landfill sites in Hong Kong. The concentrations of MPs varied from 49.0 ± 24.3 to 507.6 ± 37.3 items/L among the raw leachate samples, and a potential correlation was found between the concentration of MPs in the raw leachate sample from a given landfill site and the annual leachate generation of the site. Most MPs were 100-500 µm fragments or filaments and were transparent or yellow. Regarding the polymeric materials among the identified MPs, poly(ethylene terephthalate) and polyethylene were the most abundant types, comprising 45.30% and 21.37% of MPs, respectively. Interestingly, leachates treated by ammonia stripping contained higher concentrations of MPs than raw leachate samples, which demonstrated that the traditional treatment process may not be sufficient regarding the removal of emerging pollutants, such as MPs. Overall, our findings provide a more comprehensive picture of the pollution of MPs in landfill leachates in Hong Kong and highlight the urgent need for adopting the consideration of MPs into the conventional mindset of waste management systems in Hong Kong.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Solid Waste/analysis , Microplastics , Plastics , Water Pollutants, Chemical/analysis , Hong Kong , Ammonia , Ecosystem , Waste Disposal Facilities , China
4.
Bioresour Technol ; 390: 129868, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37844805

ABSTRACT

This study explores the feasibility of using lignosulfonate, a byproduct of the pulp and paper industry, to facilitate sludge anaerobic digestion. Biochemical methane potential assays revealed that the maximum methane production was achieved at 60 mg/g volatile solids (VS) lignosulfonate, 22.18 % higher than the control. One substrate model demonstrated that 60 mg/g VS lignosulfonate boosted the hydrolysis rate, biochemical methane potential, and degradation extent of secondary sludge by 19.12 %, 21.87 %, and 21.11 %, respectively, compared to the control. Mechanisms unveiled that lignosulfonate destroyed sludge stability, promoted organic matter release, and enhanced subsequent hydrolysis, acidification, and methanogenesis by up to 31.30 %, 74.42 % and 28.16 %, respectively. Phytotoxicity assays confirmed that lignosulfonate promoted seed germination and root development of lettuce and Chinese cabbage, with seed germination index reaching 170 ± 10 % and 220 ± 22 %, respectively. The findings suggest that lignosulfonate addition offers a sustainable approach to sludge treatment, guiding effective management practices.


Subject(s)
Sewage , Waste Disposal, Fluid , Anaerobiosis , Feasibility Studies , Bioreactors , Methane/metabolism
5.
Sci Total Environ ; 825: 154052, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35219653

ABSTRACT

Food waste (FW) is a primary constituent of solid waste and its adequate management is a global challenge. Instead of disposal in landfills, integrated treatment of FW with wastewater (WW) can diminish both environmental and economic burdens. Utilizing steady-state modelling and life cycle assessment techniques, this study investigated the prospects of FW integration with biological WW treatment in terms of WW treatment performance, net energy and carbon footprint and economics of the process. The explored scenarios include co-disposal and treatment with WW by using FW disposers and anaerobic co-digestion with sewage sludge in Hong Kong. Compared to the existing WW and FW treatment, the integrated scenarios significantly improved the energy balance (~83-126%), net greenhouse gas emissions (~90%), and economics of operation, with permissible impact on WW treatment performance. Therefore, utilizing the surplus capacity of the existing WW treatment facilities, these integrated scenarios are a promising solution for sustainable development.


Subject(s)
Refuse Disposal , Sewage , Anaerobiosis , Bioreactors , Carbon Footprint , Food , Methane , Refuse Disposal/methods , Waste Disposal, Fluid/methods , Wastewater
6.
Bioresour Technol ; 332: 125101, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33858757

ABSTRACT

Recently, anaerobic self-forming dynamic membrane bioreactors (AnSFDMBRs) have attracted increasing attention, and are considered as an alternative to conventional anaerobic membrane bioreactors (AnMBRs). The key advantages of AnSFDMBRs include high flux, low propensity towards fouling, and low capital and operational costs. Although there have been several reviews on AnMBRs, very few reviews on AnSFDMBR system. Previous AnSFDMBR studies have focused on lab-scale to investigate the long-term flux, methods to improve performance and the associated mechanisms. Microbial analysis showed that the phyla namely Proteobacteria, Bacteroidetes and Firmicutes are dominant in both bulk sludge and cake biofilm, but their abundance is low in biocake. This review critically examines the fundamentals of AnSFDMBRs, operational conditions, process optimization and applications. Moreover, the current knowledge gaps (e.g., dynamic membrane module optimization, membrane surface modification and functional microbes enrichment) that should be studied in future to design an efficient AnSFDMBR system for treatment of diverse wastewaters.


Subject(s)
Membranes, Artificial , Water Purification , Anaerobiosis , Bioreactors , Sewage , Waste Disposal, Fluid , Wastewater
7.
Water Res ; 185: 116283, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32795719

ABSTRACT

The optimum operation strategy for a side-stream external anaerobic self-forming dynamic membrane bioreactor (AnSFDMBR) was investigated by coupling such a system with an up-flow anaerobic sludge blanket reactor. Time-based backwashing with different intervals and transmembrane pressure (TMP)-based backwashing were compared as the operation strategies of the AnSFDMBR. The system performance, extracellular polymeric substance (EPS) accumulation in the dynamic layer and on the membrane mesh of the AnSFDMBR, and the physical properties of the dynamic layer were closely monitored. Both operation strategies achieved stable operation with effluent turbidity less than 5 nephelometric turbidity units with a slowly increasing TMP. However, with the time-based backwashing strategy, the EPS accumulation rate in the dynamic layer was more than 20 times higher than that on the mesh, indicating that frequent backwashing might have a negative impact on the AnSFDMBR. The impacts of EPS accumulation on the membrane mesh were negligible considering the small amount of EPS residual and the large pore size of the mesh. On the contrary, the EPS accumulation in the dynamic layer changed the layer's physical properties and further impacted on the performance of the AnSFDMBR. The accumulation of polysaccharides in the dynamic layer was the main reason for the layer's compactness, which was negatively correlated with the specific surface area and further led to the TMP increase. The polysaccharides in the dynamic layer-to-sludge ratio increased to around 1.6 with only 5 days of time-base operation. With TMP-based operation, it took more than 10 days for polysaccharides in the dynamic layer-to-sludge ratio reaching 1.6. The low TMP increase rate, high effluent quality, and slow EPS accumulation with TMP-based backwashing indicated TMP-based operation is applicable in the studied AnSFDMBR. Nevertheless, the correlation between TMP and the accumulation of polysaccharides should be further investigated to find the optimum TMP for backwashing.


Subject(s)
Bioreactors , Extracellular Polymeric Substance Matrix , Anaerobiosis , Membranes, Artificial , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL
...