Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2580: 89-114, 2023.
Article in English | MEDLINE | ID: mdl-36374452

ABSTRACT

Recent advances have revolutionized the oldest high-throughput single-cell analytical tool, flow cytometry. Fluorescent analyzers and sorters with up to seven lasers and the potential to detect up to 50 parameters are changing the way flow cytometry is used, but old school practices which are inadequate for new technologies remain alive. This chapter summarizes recent advances, explains the most salient new features and offers a step-by-step guide to develop and successfully execute high-dimensional fluorescent flow cytometry experiments.


Subject(s)
Lasers , Light , Flow Cytometry/methods
2.
iScience ; 24(11): 103347, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34820606

ABSTRACT

Myeloid suppressor cells promote tumor growth by a variety of mechanisms which are not fully characterized. We identified myeloid cells (MCs) expressing the latency-associated peptide (LAP) of TGF-ß on their surface and LAPHi MCs that stimulate Foxp3+ Tregs while inhibiting effector T cell proliferation and function. Blocking TGF-ß inhibits the tolerogenic ability of LAPHi MCs. Furthermore, adoptive transfer of LAPHi MCs promotes Treg accumulation and tumor growth in vivo. Conversely, anti-LAP antibody, which reduces LAPHi MCs, slows cancer progression. Single-cell RNA-Seq analysis on tumor-derived immune cells revealed LAPHi dominated cell subsets with distinct immunosuppressive signatures, including those with high levels of MHCII and PD-L1 genes. Analogous to mice, LAP is expressed on myeloid suppressor cells in humans, and these cells are increased in glioma patients. Thus, our results identify a previously unknown function by which LAPHi MCs promote tumor growth and offer therapeutic intervention to target these cells in cancer.

3.
PLoS Pathog ; 17(4): e1009430, 2021 04.
Article in English | MEDLINE | ID: mdl-33822828

ABSTRACT

In malaria-naïve children and adults, Plasmodium falciparum-infected red blood cells (Pf-iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf-iRBC-triggered inflammatory symptoms decreases with cumulative Pf exposure. The molecular mechanisms underlying these clinical observations remain unclear. Age-stratified analyses of uninfected, asymptomatic Malian individuals before the malaria season revealed that monocytes of adults produced lower levels of inflammatory cytokines (IL-1ß, IL-6 and TNF) in response to Pf-iRBC stimulation compared to monocytes of Malian children and malaria-naïve U.S. adults. Moreover, monocytes of Malian children produced lower levels of IL-1ß and IL-6 following Pf-iRBC stimulation compared to 4-6-month-old infants. Accordingly, monocytes of Malian adults produced more IL-10 and expressed higher levels of the regulatory molecules CD163, CD206, Arginase-1 and TGM2. These observations were recapitulated in an in vitro system of monocyte to macrophage differentiation wherein macrophages re-exposed to Pf-iRBCs exhibited attenuated inflammatory cytokine responses and a corresponding decrease in the epigenetic marker of active gene transcription, H3K4me3, at inflammatory cytokine gene loci. Together these data indicate that Pf induces epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that attenuates inflammatory responses during subsequent Pf exposure. Trial Registration: ClinicalTrials.gov NCT01322581.


Subject(s)
Malaria, Falciparum/immunology , Malaria/immunology , Monocytes/metabolism , Phenotype , Adult , Child , Child, Preschool , Cytokines/metabolism , Erythrocytes/metabolism , Humans , Infant , Inflammation/immunology , Inflammation/metabolism , Macrophages/metabolism , Malaria/blood , Malaria, Falciparum/blood , Monocytes/immunology , Plasmodium falciparum/immunology , Plasmodium falciparum/metabolism
4.
bioRxiv ; 2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33106806

ABSTRACT

In malaria-naïve children and adults, Plasmodium falciparum -infected red blood cells ( Pf -iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf -iRBC-triggered inflammatory symptoms decreases with cumulative Pf exposure. The molecular mechanisms underlying these clinical observations remain unclear. Age-stratified analyses of monocytes collected from uninfected, asymptomatic Malian individuals before the malaria season revealed an inverse relationship between age and Pf -iRBC-inducible inflammatory cytokine (IL-1ß, IL-6 and TNF) production, whereas Malian infants and malaria-naïve U.S. adults produced similarly high levels of inflammatory cytokines. Accordingly, monocytes of Malian adults produced more IL-10 and expressed higher levels of the regulatory molecules CD163, CD206, Arginase-1 and TGM2. These observations were recapitulated in an in vitro system of monocyte to macrophage differentiation wherein macrophages re-exposed to Pf -iRBCs exhibited attenuated inflammatory cytokine responses and a corresponding decrease in the epigenetic marker of active gene transcription, H3K4me3, at inflammatory cytokine gene loci. Together these data indicate that Pf induces epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that attenuates inflammatory responses during subsequent Pf exposure. These findings also suggest that past malaria exposure could mitigate monocyte-associated immunopathology induced by other pathogens such as SARS-CoV-2. AUTHOR SUMMARY: The malaria parasite is mosquito-transmitted and causes fever and other inflammatory symptoms while circulating in the bloodstream. However, in regions of high malaria transmission the parasite is less likely to cause fever as children age and enter adulthood, even though adults commonly have malaria parasites in their blood. Monocytes are cells of the innate immune system that secrete molecules that cause fever and inflammation when encountering microorganisms like malaria. Although inflammation is critical to initiating normal immune responses, too much inflammation can harm infected individuals. In Mali, we conducted a study of a malaria-exposed population from infants to adults and found that participants' monocytes produced less inflammation as age increases, whereas monocytes of Malian infants and U.S. adults, who had never been exposed to malaria, both produced high levels of inflammatory molecules. Accordingly, monocytes exposed to malaria in the laboratory became less inflammatory when re-exposed to malaria again later, and these monocytes 'turned down' their inflammatory genes. This study helps us understand how people become immune to inflammatory symptoms of malaria and may also help explain why people in malaria-endemic areas appear to be less susceptible to the harmful effects of inflammation caused by other pathogens such as SARS-CoV-2.

5.
Diabetes ; 67(8): 1589-1603, 2018 08.
Article in English | MEDLINE | ID: mdl-29871859

ABSTRACT

Transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) is a receptor for the TNF superfamily cytokines, B cell-activating factor (BAFF), and A proliferation-inducing ligand (APRIL). Here, we demonstrate that TACI-deficient mice subjected to high-fat diet (HFD) are protected from weight gain and dysregulated glucose homeostasis. Resistance to HFD-induced metabolic changes in TACI-deficient mice does not involve TACI-mediated adipogenesis. Instead, accumulation of M2 macrophages (Mϕs), eosinophils, and type 2 innate lymphoid cells in visceral adipose tissue (VAT) is implicated in the protection from obesity-induced assaults. In support of this hypothesis, adoptively transferred TACI-deficient peritoneal or adipose tissue Mϕs, but not B cells, can improve glucose metabolism in the obese host. Interestingly, the transferred TACI-deficient Mϕs not only home to host VAT but also trigger the accumulation of host M2 Mϕs and eosinophils in VAT. The increase in host M2 Mϕs in VAT is likely a result of eosinophil recruitment in response to eotaxin-2 produced by TACI-deficient Mϕs. Insulin signaling experiments revealed that IL-10 secreted by TACI-deficient Mϕs is responsible for maintaining adipocyte insulin sensitivity. Thus, the adoptive transfer experiments offer a model where TACI-deficient Mϕs accumulate in VAT and protect against metaflammation and obesity-associated dysregulation of glucose metabolism.


Subject(s)
Adiposity , Glucose Intolerance/prevention & control , Immunotherapy, Adoptive , Intra-Abdominal Fat/immunology , Macrophages/transplantation , Obesity/therapy , Transmembrane Activator and CAML Interactor Protein/metabolism , Animals , Biomarkers/blood , Biomarkers/metabolism , Cells, Cultured , Diet, High-Fat/adverse effects , Female , Gene Expression Regulation , Glucose Intolerance/etiology , Glucose Intolerance/immunology , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Insulin Resistance , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/pathology , Macrophages, Peritoneal/transplantation , Mice , Mice, Knockout , Obesity/metabolism , Obesity/pathology , Obesity/physiopathology , RNA Interference , Transmembrane Activator and CAML Interactor Protein/antagonists & inhibitors , Transmembrane Activator and CAML Interactor Protein/chemistry , Transmembrane Activator and CAML Interactor Protein/genetics , Weight Gain
6.
Front Immunol ; 9: 3049, 2018.
Article in English | MEDLINE | ID: mdl-30619375

ABSTRACT

The inability of infants to mount proper follicular helper T (TFH) cell response renders this age group susceptible to infectious diseases. Initial instruction of T cells by antigen presenting cells and subsequent differentiation into TFH cells are controlled by T cell receptor signal strength, co-stimulatory molecules and cytokines such as IL-6 and IL-21. In immunized adults, IL-6 promotes TFH development by increasing the expression of CXCR5 and the TFH master transcription factor, B cell lymphoma 6. Underscoring the importance of IL-6 in TFH generation, we found improved antibody responses accompanied by increased TFH cells and decreased follicular regulatory helper T (TFR) cells, a Foxp3 expressing inhibitory CD4+ T cell occupying the germinal center (GC), when a tetanus toxoid conjugated pneumococcal polysaccharide type 14 vaccine was injected in adult mice together with IL-6. Paradoxically, in neonates IL-6 containing PPS14-TT vaccine suppressed the already impaired TFH development and antibody responses in addition to increasing TFR cell population. Supporting the diminished TFH development, we detected lower frequency of phospho-STAT-3+ TFH in immunized neonatal T cells after IL-6 stimulation than adult cells. Moreover, IL-6 induced more phospho-STAT-3+ TFR in neonatal cells than adult cells. We also measured lower expression of IL-6R on TFH cells and higher expression on TFR cells in neonatal cells than adult cells, a possible explanation for the difference in IL-6 induced signaling in different age groups. Supporting the flow cytometry findings, microscopic examination revealed the localization of Treg cells in the splenic interfollicular niches of immunized adult mice compared to splenic follicles in neonatal mice. In addition to the limitations in the formation of IL-21 producing TFH cells, neonatal mice GC B cells also expressed lower levels of IL-21R in comparison to the adult mice cells. These findings point to diminished IL-6 activity on neonatal TFH cells as an underlying mechanism of the increased TFR: TFH ratio in immunized neonatal mice.


Subject(s)
Germinal Center/immunology , Immunogenicity, Vaccine , Interleukin-6/immunology , Meningococcal Vaccines/immunology , T-Lymphocytes, Helper-Inducer/immunology , Age Factors , Animals , Animals, Newborn , Cell Differentiation/immunology , Female , Germinal Center/cytology , Germinal Center/metabolism , Interleukin-21 Receptor alpha Subunit/immunology , Interleukin-21 Receptor alpha Subunit/metabolism , Interleukin-6/administration & dosage , Interleukins/immunology , Interleukins/metabolism , Meningococcal Vaccines/administration & dosage , Mice , Mice, Inbred C57BL , Models, Animal , Receptors, Interleukin-6/immunology , Receptors, Interleukin-6/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Tetanus Toxoid/administration & dosage , Tetanus Toxoid/immunology , Vaccines, Combined/administration & dosage , Vaccines, Combined/immunology
7.
Proc Natl Acad Sci U S A ; 112(30): E4094-103, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26170307

ABSTRACT

The TNF family member, transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), is a key molecule for plasma cell maintenance and is required in infections where protection depends on antibody response. Here, we report that compared with WT mouse, TACI KO Μϕs expressed lower levels of Toll-like receptors (TLRs), CD14, myeloid differentiation primary response protein 88, and adaptor protein Toll/IL-1 receptor domain-containing adapter-inducing IFN-ß and responded poorly to TLR agonists. Analysis of Μϕ phenotype revealed that, in the absence of TACI, Μϕs adapt the alternatively activated (M2) phenotype. Steady-state expression levels for M2 markers IL-4Rα, CD206, CCL22, IL-10, Arg1, IL1RN, and FIZZ1 were significantly higher in TACI KO Μϕ than in WT cells. Confirming their M2 phenotype, TACI-KO Mϕs were unable to control Leishmania major infection in vitro, and intradermal inoculation of Leishmania resulted in a more severe manifestation of disease than in the resistant C57BL/6 strain. Transfer of WT Μϕs to TACI KO mice was sufficient to significantly reduce disease severity. TACI is likely to influence Mϕ phenotype by mediating B cell-activating factor belonging to the TNF family (BAFF) and a proliferation inducing ligand (APRIL) signals because both these ligands down-regulated M2 markers in WT but not in TACI-deficient Μϕs. Moreover, treatment of Μϕs with BAFF or APRIL enhanced the clearance of Leishmania from cells only when TACI is expressed. These findings may have implications for understanding the shortcomings of host response in newborns where TACI expression is reduced and in combined variable immunodeficiency patients where TACI signaling is ablated.


Subject(s)
Leishmania/pathogenicity , Leishmaniasis/immunology , Macrophages/immunology , Transmembrane Activator and CAML Interactor Protein/metabolism , Animals , B-Cell Activating Factor/metabolism , Cell Proliferation , Gene Expression Regulation , Leishmaniasis/metabolism , Ligands , Lipopolysaccharide Receptors/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Phosphorylation , Signal Transduction , Transmembrane Activator and CAML Interactor Protein/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism
8.
Nat Med ; 21(6): 638-46, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26005855

ABSTRACT

Our understanding of the pathways that regulate lymphocyte metabolism, as well as the effects of metabolism and its products on the immune response, is still limited. We report that a metabolic program controlled by the transcription factors hypoxia inducible factor-1α (HIF1-α) and aryl hydrocarbon receptor (AHR) supports the differentiation of type 1 regulatory T cell (Tr1) cells. HIF1-α controls the early metabolic reprograming of Tr1 cells. At later time points, AHR promotes HIF1-α degradation and takes control of Tr1 cell metabolism. Extracellular ATP (eATP) and hypoxia, linked to inflammation, trigger AHR inactivation by HIF1-α and inhibit Tr1 cell differentiation. Conversely, CD39 promotes Tr1 cell differentiation by depleting eATP. CD39 also contributes to Tr1 suppressive activity by generating adenosine in cooperation with CD73 expressed by responder T cells and antigen-presenting cells. These results suggest that HIF1-α and AHR integrate immunological, metabolic and environmental signals to regulate the immune response.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunity, Cellular , Inflammation/immunology , Receptors, Aryl Hydrocarbon/metabolism , T-Lymphocytes, Regulatory/metabolism , Adult , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Apyrase/immunology , Apyrase/metabolism , Cell Differentiation/immunology , Female , Hematopoiesis/immunology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Inflammation/metabolism , Inflammation/pathology , Lymphocyte Activation/immunology , Mice , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/immunology , T-Lymphocytes, Regulatory/immunology
9.
PLoS One ; 8(12): e81774, 2013.
Article in English | MEDLINE | ID: mdl-24358127

ABSTRACT

Monocytic cells exhibit a high level of heterogeneity and have two distinct modes of their activation: 1) classical M1 path associated with inflammation and tissue damage, and 2) alternative M2 path. Although it has been demonstrated that M2 macrophages play an important role in the regulation of the allergic immune responses, tissue maintenance and repair, little is known about the mechanisms that determine the M2 phenotype. We have previously shown that miR-124 is expressed in microglia that exhibit the M2 phenotype and overexpression of miR-124 in macrophages resulted in downregulation of a number of M1 markers (MHC class II, CD86) and up-regulation of several M2 markers (Fizz1, Arg1). We further investigated whether the polarization of macrophages towards the M2 phenotype induced miR-124 expression. We found that exposure of cells to IL-4 and IL-13 resulted in the upregulation of miR-124 in macrophages. We also demonstrated that IL-4 induced expression of three miR-124 precursor transcripts with predominant expression of pri-miR-124.3, suggesting regulation of miR-124 expression by IL-4 on a transcriptional level. Expression of miR-124 in microglia did not depend on IL-4 and/or IL-13, whereas expression of miR-124 in lung resident macrophages was IL-4 and IL-13-dependent and was upregulated by systemic administration of IL-4 or during allergic inflammation. Upregulation of several M2 markers (CD206, Ym1) and downregulation of the M1 markers (CD86, iNOS, TNF) in M2-polarized macrophages was abrogated by a miR-124 inhibitor, suggesting that this microRNA contributed to the M2 phenotype development and maintenance. Finally we showed that human CD14(+)CD16(+) intermediate monocytes, which are found in increased numbers in patients with allergies and bronchial asthma, expressed high levels of miR-124 and exhibited other properties of M2-like cells. Thus, our study suggests that miR-124 serves as a regulator of the M2 polarization in various subsets of monocytic cells both in vitro and in vivo.


Subject(s)
Inflammation/metabolism , Interleukin-13/metabolism , Interleukin-4/metabolism , Macrophage Activation/physiology , MicroRNAs/metabolism , Monocytes/metabolism , Animals , Cell Line, Tumor , Cell Polarity/drug effects , Cell Polarity/physiology , Down-Regulation/drug effects , Humans , Interleukin-13/pharmacology , Interleukin-4/pharmacology , Lung/drug effects , Lung/metabolism , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Mice , MicroRNAs/genetics , Monocytes/drug effects , Up-Regulation/drug effects
10.
Cell Immunol ; 281(2): 159-69, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23685352

ABSTRACT

The migration of eosinophils and lymphocytes into airways is a hallmark of allergic asthma; however, the role of broncho-alveolar macrophages (BAMs) in this inflammatory process has not been fully elucidated. Using a murine Ova model of allergic airway disease (AAD), RNA isolated from BAMs was used to assess differential gene expression via microarray and qRT-PCR. Significant increases in WBCs, eosinophilia, mucus accumulation and goblet cell hyperplasia were observed in Ova sensitized and challenged mice, which correlated with increased expression of genes associated with alternatively activated M2 macrophages (e.g. arginase 1, YM-1, YM-2, Resistin like-α, and EAR-11). Other genes associated with asthma including FcγRIIb, MMP-14, CCL-8, CCL-17, ADAM-8, LTBR1, aquaporin-9 and IL-7R were also expressed at higher levels in Ova sensitized/challenged animals when compared to BAMs isolated from control animals. Eotaxin 2 (CCL-24), which is known to influence eosinophil migration, was highly up-regulated in BAMs, but not Eotaxin-1 (CCL-11). Conversely, lung interstitial macrophages expressed high levels of CCL-11, but not CCL-24. Taken together, this study provides additional evidence to support the notion that M2 BAMs play a role in eosinophil and potentially other leukocyte migration patterns into asthmatic airways.


Subject(s)
Asthma/genetics , Cell Movement/genetics , Chemokines/genetics , Eosinophils/metabolism , Gene Expression Profiling , Macrophages, Alveolar/metabolism , Animals , Asthma/chemically induced , Asthma/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Chemokine CCL24/genetics , Chemokine CCL24/metabolism , Chemokines/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Eosinophils/pathology , Female , Goblet Cells/metabolism , Goblet Cells/pathology , Leukocyte Count , Mice , Mice, Inbred BALB C , Oligonucleotide Array Sequence Analysis , Ovalbumin , Reverse Transcriptase Polymerase Chain Reaction
11.
J Clin Invest ; 122(9): 3063-87, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22863620

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive disease associated with neuronal cell death that is thought to involve aberrant immune responses. Here we investigated the role of innate immunity in a mouse model of ALS. We found that inflammatory monocytes were activated and that their progressive recruitment to the spinal cord, but not brain, correlated with neuronal loss. We also found a decrease in resident microglia in the spinal cord with disease progression. Prior to disease onset, splenic Ly6Chi monocytes expressed a polarized macrophage phenotype (M1 signature), which included increased levels of chemokine receptor CCR2. As disease onset neared, microglia expressed increased CCL2 and other chemotaxis-associated molecules, which led to the recruitment of monocytes to the CNS by spinal cord-derived microglia. Treatment with anti-Ly6C mAb modulated the Ly6Chi monocyte cytokine profile, reduced monocyte recruitment to the spinal cord, diminished neuronal loss, and extended survival. In humans with ALS, the analogous monocytes (CD14+CD16-) exhibited an ALS-specific microRNA inflammatory signature similar to that observed in the ALS mouse model, linking the animal model and the human disease. Thus, the profile of monocytes in ALS patients may serve as a biomarker for disease stage or progression. Our results suggest that recruitment of inflammatory monocytes plays an important role in disease progression and that modulation of these cells is a potential therapeutic approach.


Subject(s)
Amyotrophic Lateral Sclerosis/immunology , Immunomodulation , MicroRNAs/genetics , Monocytes/immunology , Spinal Cord/immunology , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Antibodies, Monoclonal/administration & dosage , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Ly/genetics , Antigens, Ly/immunology , Antigens, Ly/metabolism , Apoptosis , Apyrase/genetics , Apyrase/metabolism , Cell Proliferation , Chemotaxis , Female , Gene Regulatory Networks , Humans , Inflammation Mediators/metabolism , Macrophages, Alveolar/metabolism , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/metabolism , Microglia/immunology , Microglia/pathology , Monocytes/metabolism , Monocytes/pathology , Oligonucleotide Array Sequence Analysis , RNA Interference , Rats , Rats, Inbred Lew , Spinal Cord/pathology , Spleen/immunology , Spleen/pathology , Superoxide Dismutase/genetics , Superoxide Dismutase-1 , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
12.
Bioconjug Chem ; 20(1): 163-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19086903

ABSTRACT

The efficiency of nonviral vectors for gene delivery may be enhanced by understanding the key barriers that limit the translocation of the therapeutic DNA into the nucleus. One such barrier is the instability of DNA in the cytoplasm. In this work, we have developed a method to dual-label plasmid DNA to be utilized as a tool to elucidate DNA instability during its trafficking in the intracellular microenvironment. Plasmid DNA containing rhodamine and maleimide groups linked using peptide nucleic acid (PNA) linkers was utilized for conjugation. Covalent conjugation of the maleimide group with a second fluorophore, fluorescein, did not alter the electrophoretic mobility or the structural integrity of the DNA, as confirmed by gel electrophoresis. The intact DNA was visualized as a single color (yellow) due to the close proximity of the green and red fluorophores. DNA degradation was simulated using restriction endonucleases (BamH1 and PflMI) to cut the DNA at two or more sites resulting in color separation. Confocal time-lapse imaging was utilized to follow DNA stability upon incubation of Lipofectamine2000/dual-labeled DNA complexes in CHO-K1 cells. Yellow fluorescent voxels were seen in the cell cytoplasm indicating the presence of intact DNA. Red and green fluorescent voxels were also seen in a few cells, suggesting separation of the fluorophores and probable DNA degradation. The methodology developed in this report provides a new tracking tool for investigators to explore DNA degradation at the molecular level inside single cell.


Subject(s)
Fluorescent Dyes , Molecular Probe Techniques , Plasmids/metabolism , Transfection/standards , Animals , CHO Cells , Cricetinae , Cricetulus , Plasmids/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL