Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 4958, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33009395

ABSTRACT

Striatal dopamine (DA) is critical for action and learning. Recent data show that DA release is under tonic inhibition by striatal GABA. Ambient striatal GABA tone on striatal projection neurons can be determined by plasma membrane GABA uptake transporters (GATs) located on astrocytes and neurons. However, whether striatal GATs and astrocytes determine DA output are unknown. We reveal that DA release in mouse dorsolateral striatum, but not nucleus accumbens core, is governed by GAT-1 and GAT-3. These GATs are partly localized to astrocytes, and are enriched in dorsolateral striatum compared to accumbens core. In a mouse model of early parkinsonism, GATs are downregulated, tonic GABAergic inhibition of DA release augmented, and nigrostriatal GABA co-release attenuated. These data define previously unappreciated and important roles for GATs and astrocytes in supporting DA release in striatum, and reveal a maladaptive plasticity in early parkinsonism that impairs DA output in vulnerable striatal regions.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Down-Regulation , GABA Plasma Membrane Transport Proteins/metabolism , Parkinsonian Disorders/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Astrocytes/metabolism , Cell Membrane/metabolism , Disease Models, Animal , Glutamate Decarboxylase/metabolism , Mice, Inbred C57BL , Models, Biological , Nucleus Accumbens/metabolism
2.
J Neurosci ; 39(6): 1058-1065, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30541909

ABSTRACT

Nigrostriatal dopamine (DA) is critical to action selection and learning. Axonal DA release is locally influenced by striatal neurotransmitters. Striatal neurons are principally GABAergic projection neurons and interneurons, and a small minority of other neurons are cholinergic interneurons (ChIs). ChIs strongly gate striatal DA release via nicotinic receptors (nAChRs) identified on DA axons. Striatal GABA is thought to modulate DA, but GABA receptors have not been documented conclusively on DA axons. However, ChIs express GABA receptors and are therefore candidates for potential mediators of GABA regulation of DA. We addressed whether striatal GABA and its receptors can modulate DA release directly, independently from ChI regulation, by detecting DA in striatal slices from male mice using fast-scan cyclic voltammetry in the absence of nAChR activation. DA release evoked by single electrical pulses in the presence of the nAChR antagonist dihydro-ß-erythroidine was reduced by GABA or agonists of GABAA or GABAB receptors, with effects prevented by selective GABA receptor antagonists. GABA agonists slightly modified the frequency sensitivity of DA release during short stimulus trains. GABA agonists also suppressed DA release evoked by optogenetic stimulation of DA axons. Furthermore, antagonists of GABAA and GABAB receptors together, or GABAB receptors alone, significantly enhanced DA release evoked by either optogenetic or electrical stimuli. These results indicate that striatal GABA can inhibit DA release through GABAA and GABAB receptors and that these actions are not mediated by cholinergic circuits. Furthermore, these data reveal that there is a tonic inhibition of DA release by striatal GABA operating through predominantly GABAB receptors.SIGNIFICANCE STATEMENT The principal inhibitory transmitter in the mammalian striatum, GABA, is thought to modulate striatal dopamine (DA) release, but definitive evidence for GABA receptors on DA axons is lacking. Striatal cholinergic interneurons regulate DA release via axonal nicotinic receptors (nAChRs) and also express GABA receptors, but they have not been eliminated as potentially critical mediators of DA regulation by GABA. Here, we found that GABAA and GABAB receptors inhibit DA release without requiring cholinergic interneurons. Furthermore, ambient levels of GABA inhibited DA release predominantly through GABAB receptors. These findings provide further support for direct inhibition of DA release by GABA receptors and reveal that striatal GABA operates a tonic inhibition on DA output that could critically influence striatal output.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Receptors, GABA-A/metabolism , Receptors, GABA-B/metabolism , Substantia Nigra/metabolism , Animals , Axons/metabolism , Cholinergic Antagonists/pharmacology , Dihydro-beta-Erythroidine/pharmacology , Electric Stimulation , GABA Agonists/pharmacology , GABA Antagonists/pharmacology , Male , Mice , Mice, Inbred C57BL , Optogenetics , Parasympathetic Nervous System/drug effects , Parasympathetic Nervous System/metabolism , Receptors, GABA-A/drug effects , Receptors, GABA-B/drug effects , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL