Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genom Data ; 25(1): 20, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378481

ABSTRACT

BACKGROUND: Flowering plays an important role in completing the reproductive cycle of plants and obtaining next generation of plants. In case of citrus, it may take more than a year to achieve progeny. Therefore, in order to fasten the breeding processes, the juvenility period needs to be reduced. The juvenility in plants is regulated by set of various flowering genes. The citrus fruit and leaves possess various medicinal properties and are subjected to intensive breeding programs to produce hybrids with improved quality traits. In order to break juvenility in Citrus, it is important to study the role of flowering genes. The present study involved identification of genes regulating flowering in Citrus sinensis L. Osbeck via homology based approach. The structural and functional characterization of these genes would help in targeting genome editing techniques to induce mutations in these genes for producing desirable results. RESULTS: A total of 43 genes were identified which were located on all the 9 chromosomes of citrus. The in-silico analysis was performed to determine the genetic structure, conserved motifs, cis-regulatory elements (CREs) and phylogenetic relationship of the genes. A total of 10 CREs responsible for flowering were detected in 33 genes and 8 conserved motifs were identified in all the genes. The protein structure, protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed to study the functioning of these genes which revealed the involvement of flowering proteins in circadian rhythm pathways. The gene ontology (GO) and gene function analysis was performed to functionally annotate the genes. The structure of the genes and proteins were also compared among other Citrus species to study the evolutionary relationship among them. The expression study revealed the expression of flowering genes in floral buds and ovaries. The qRT-PCR analysis revealed that the flowering genes were highly expressed in bud stage, fully grown flower and early stage of fruit development. CONCLUSIONS: The findings suggested that the flowering genes were highly conserved in citrus species. The qRT-PCR analysis revealed the tissue specific expression of flowering genes (CsFT, CsCO, CsSOC, CsAP, CsSEP and CsLFY) which would help in easy detection and targeting of genes through various forward and reverse genetic approaches.


Subject(s)
Citrus sinensis , Citrus , Citrus sinensis/genetics , Phylogeny , Plant Breeding , Citrus/genetics , Citrus/metabolism , Flowers/genetics
2.
Mol Biotechnol ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041775

ABSTRACT

Citrus reticulata Blanco also known as kinnow mandarin is a widely grown horticultural crop in Punjab. CRISPR/Cas9 technology is being widely used for generation of varieties with increased resilience towards abiotic and biotic stresses as well as improved horticultural traits. Xanthomonas citri subsp. citri (Xcc)-mediated Agroinfiltration offers a fast and transgene-free method for the delivery of CRISPR/Cas9 constructs for systemic introduction into plants for functional genomics and expression studies. The technology is currently unexplored in kinnow mandarin. This study is aimed at establishing an efficient method of Cas9 delivery for transient knockout of PDS (phytoene desaturase) gene in kinnow mandarin. The construct pKO-119-PDS N-Cas9/sgRNA:PDS1 carrying sgRNA and Cas9 enzyme was delivered into the dorsal surface of young leaves of kinnow mandarin. The leaves showed albino patches at the point of injection within 60 h. Two surfactants (Triton-X and Silwet™) were used to ease the Agroinfiltration process which resulted in variation in the expression of vector. The Sanger's analysis of the treated plants showed a substitution within the sgRNA region which resulted in change in amino acid from proline to serine. The protocol provides a feasible and an efficient method for genome editing in C. reticulata which could be helpful in future studies aimed at genome editing as well as genetic transformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...