Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Int J Hyg Environ Health ; 249: 114101, 2023 04.
Article in English | MEDLINE | ID: mdl-36805185

ABSTRACT

Phthalates are mainly used as plasticizers for polyvinyl chloride (PVC). Exposure to several phthalates is associated with different adverse effects most prominently on the development of reproductive functions. The HBM4EU Aligned Studies (2014-2021) have investigated current European exposure to ten phthalates (DEP, BBzP, DiBP, DnBP, DCHP, DnPeP, DEHP, DiNP, DiDP, DnOP) and the substitute DINCH to answer the open policy relevant questions which were defined by HBM4EU partner countries and EU institutions as the starting point of the programme. The exposure dataset includes ∼5,600 children (6-11 years) and adolescents (12-18 years) from up to 12 countries per age group and covering the North, East, South and West European regions. Study data from participating studies were harmonised with respect to sample size and selection of participants, selection of biomarkers, and quality and comparability of analytical results to provide a comparable perspective of European exposure. Phthalate and DINCH exposure were deduced from urinary excretions of metabolites, where concentrations were expressed as their key descriptor geometric mean (GM) and 95th percentile (P95). This study aims at reporting current exposure levels and differences in these between European studies and regions, as well as comparisons to human biomonitoring guidance values (HBM-GVs). GMs for children were highest for ∑DEHP metabolites (33.6 µg/L), MiBP (26.6 µg/L), and MEP (24.4 µg/L) and lowest for∑DiDP metabolites (1.91 µg/L) and ∑DINCH metabolites (3.57 µg/L). In adolescents highest GMs were found for MEP (43.3 µg/L), ∑DEHP metabolites (28.8 µg/L), and MiBP (25.6 µg/L) and lowest for ∑DiDP metabolites (= 2.02 µg/L) and ∑DINCH metabolites (2.51 µg/L). In addition, GMs and P95 stratified by European region, sex, household education level, and degree of urbanization are presented. Differences in average biomarker concentrations between sampling sites (data collections) ranged from factor 2 to 9. Compared to the European average, children in the sampling sites OCC (Denmark), InAirQ (Hungary), and SPECIMEn (The Netherlands) had the lowest concentrations across all metabolites and ESTEBAN (France), NAC II (Italy), and CROME (Greece) the highest. For adolescents, comparably higher metabolite concentrations were found in NEB II (Norway), PCB cohort (Slovakia), and ESTEBAN (France), and lower concentrations in POLAES (Poland), FLEHS IV (Belgium), and GerES V-sub (Germany). Multivariate analyses (Survey Generalized Linear Models) indicate compound-specific differences in average metabolite concentrations between the four European regions. Comparison of individual levels with HBM-GVs revealed highest rates of exceedances for DnBP and DiBP, with up to 3 and 5%, respectively, in children and adolescents. No exceedances were observed for DEP and DINCH. With our results we provide current, detailed, and comparable data on exposure to phthalates in children and - for the first time - in adolescents, and - for the first time - on DINCH in children and adolescents of all four regions of Europe which are particularly suited to inform exposure and risk assessment and answer open policy relevant questions.


Subject(s)
Environmental Pollutants , Phthalic Acids , Humans , Child , Adolescent , Environmental Exposure/analysis , Environmental Pollutants/analysis , Phthalic Acids/metabolism
2.
Toxics ; 10(9)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36136503

ABSTRACT

Information about the effects of phthalates and non-phthalate substitute cyclohexane-1,2-dicarboxylic acid diisononyl ester (HEXAMOLL® DINCH) on children's neurodevelopment is limited. The aim of the present research is to evaluate the association between phthalate/HEXAMOLL® DINCH exposure and child neurodevelopment in three European cohorts involved in HBM4EU Aligned Studies. Participating subjects were school-aged children belonging to the Northern Adriatic cohort II (NAC-II), Italy, Odense Child Cohort (OCC), Denmark, and PCB cohort, Slovakia. In each cohort, children's neurodevelopment was assessed through the Full-Scale Intelligence Quotient score (FSIQ) of the Wechsler Intelligence Scale of Children test using three different editions. The children's urine samples, collected for one point in time concurrently with the neurodevelopmental evaluation, were analyzed for several phthalates/HEXAMOLL® DINCH biomarkers. The relation between phthalates/HEXAMOLL® DINCH and FSIQ was explored by applying separate multiple linear regressions in each cohort. The means and standard deviations of FSIQ were 109 ± 11 (NAC-II), 98 ± 12 (OCC), and 81 ± 15 (PCB cohort). In NAC-II, direct associations between FSIQ and DEHP's biomarkers were found: 5OH-MEHP+5oxo-MEHP (ß = 2.56; 95% CI 0.58-4.55; N = 270), 5OH-MEHP+5cx-MEPP (ß = 2.48; 95% CI 0.47-4.49; N = 270) and 5OH-MEHP (ß = 2.58; 95% CI 0.65-4.51; N = 270). On the contrary, in the OCC the relation between DEHP's biomarkers and FSIQ tended to be inverse but imprecise (p-value ≥ 0.10). No associations were found in the PCB cohort. FSIQ was not associated with HEXAMOLL® DINCH in any cohort. In conclusion, these results do not provide evidence of an association between concurrent phthalate/DINCHHEXAMOLLR DINCH exposure and IQ in children.

3.
Toxics ; 10(3)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35324768

ABSTRACT

Background: Occupational health hazards associated with phthalate exposure among nurses are still not well understood. Methods: We used high-performance liquid chromatography and tandem mass spectrometry to analyze phthalates. Anthropometric measurements and questionnaires were conducted. Results: We observed associations between mono-benzyl phthalate (MBzP) and body mass index (BMI), hip circumference (HC), waist circumference (WC), waist to height ratio (WHtR), and fat mass index (FMI), visceral fat content, BMI risk and hip index risk (HIrisk), adjusted to consumer behavior and consumer practices (r = 0.36−0.61; p ≤ 0.046). In the same model, we detected an association between mono-n-butyl phthalate (MnBP) and waist to hip ratio (WHR; r = 0.36; p = 0.046), mono-carboxy-isononyl phthalate (cx-MiNP) and BMI (r = 0.37; p = 0.043), HC (r = 0.4; p = 0.026) and WHtR (r = 0.38; p = 0.037), between mono-oxo-isononyl phthalate oxo (MiNP) and HC (r = 0.36; p = 0.045), mono-2-ethylhexyl phthalate (MEHP), mono(2-ethyl-5-oxohexyl) phthalate (oxo-MEHP) and HIrisk (r = 0.38−0.41; p ≤ 0.036), between oxo-MEHP and Anthropometric Risk Index (ARI risk; r = 0.4; p = 0.028). We detected a relationship between BMI and MBzP (ß = 0.655; p < 0.001) and mono-2-ethylhexyl phthalate (MEHP; ß = −0.365; p = 0.003), between hip circumference and MBzP (ß = 0.486; p < 0.001), MEHP (ß = −0.402; p = 0.001), and sum of secondary metabolites of diisononyl phthalate (∑DiNP; ß = 0.307; p = 0.016). We observed a relationship between fat content and MBzP (ß = 0.302; p = 0.033), OH-MnBP (ß = −0.736; p = 0.006) and MiBP (ß = 0.547; p = 0.046), visceral fat content and MBzP (ß = 0.307; p = 0.030), HI-risk and MBzP (ß = 0.444; p = 0.001), ARI-risk and sum of di-n-butyl phthalate metabolites (∑DnBP; ß = 0.337; p = 0.018). We observed an association between the use of protective equipment with cx-MiNP. Conclusions: Occupational exposure to phthalates may induce abdominal obesity and result in obesity-related metabolic disorders.

4.
Children (Basel) ; 9(3)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35327785

ABSTRACT

Adverse birth outcomes present risk factors resulting in neonatal morbidity and mortality. Sufficient maternal hormonal concentrations are crucial for normal foetal development. Previous studies have shown a relationship between phthalate exposure and maternal hormonal levels during pregnancy. This study aims to investigate if neonatal anthropometric parameters are associated with maternal endocrine parameters during the ≤15th week of gestation and the third trimester of pregnancy concerning phthalate exposure in pregnant women from Nitra, Slovakia. We used high-performance liquid chromatography, tandem mass spectrometry (HPLC-MS/MS), and electro-chemiluminescence immunoassay to quantify urinary concentrations of phthalates and serum concentrations of hormones and sex hormone-binding globulin (SHBG), respectively. We observed a mostly positive correlation between neonatal anthropometric parameters (gestational age, birth length, birth weight, head circumference) and maternal concentration of phthalate metabolites (p ≤ 0.05). The hierarchical multivariate regression results showed a statistically significant association between Apgar score at 5 min after delivery, gestational age, birth weight, head circumference, and maternal endocrine parameters during pregnancy (p ≤ 0.05), adjusted to phthalate metabolites. To the best of our knowledge, our study is the first to indicate that prenatal exposure to phthalates may also affect birth outcomes through interaction with the maternal endocrine system.

5.
Reprod Toxicol ; 102: 35-42, 2021 06.
Article in English | MEDLINE | ID: mdl-33838276

ABSTRACT

Phthalates belong to the endocrine-disrupting chemicals, altering the hormonal balance in humans during pregnancy with further effects on the reproductive system. This study aimed to investigate the associations between maternal hormone levels during early pregnancy (≤15th week of pregnancy) and reproductive markers in infant boys (n = 37; 61.67 %; average age 3.51 ±â€¯0.73 months) and girls (n = 23; 38.33 %; average age 3.30 ±â€¯0.33 months) concerning prenatal exposure to phthalates. We used high-performance liquid chromatography, tandem mass spectrometry (HPLC-MS/MS), and electro-chemiluminescence immunoassay to quantify urinary concentrations of phthalates and serum concentrations of hormones, respectively. In Mother-Infant Study Cohort (PRENATAL), we observed positive and negative correlations between infants' reproductive markers and phthalate metabolites (p ≤ 0.05). Next, we noticed associations between the penile length and maternal testosterone (ß = 0.464) and estradiol levels (ß = -0.365) with increasing significance after adjustment to maternal mono-n-butyl phthalate (MnBP) and monobenzyl phthalate (MBzP) (p ≤ 0.05). We observed a positive association (ß = 0.337) between penile width and maternal testosterone with increasing significance after adjustment to maternal mono-iso-butyl phthalate (MiBP) (p ≤ 0.05). In a group of girls, we reported a negative association between ACD/AFD ratio and maternal follicle-stimulating hormone (FSH) and estradiol levels with increasing significance after adjustment to maternal monoethyl phthalate (MEP), MnBP, and mono(hydroxy-iso-butyl) phthalate (OH-MiBP). Our results highlight that prenatal phthalate exposure may modulate the effects of maternal hormone levels during early pregnancy on infants' reproductive markers.


Subject(s)
Environmental Pollutants/toxicity , Maternal Exposure , Phthalic Acids/toxicity , Adult , Cohort Studies , Endocrine Disruptors/toxicity , Female , Humans , Infant , Male , Pregnancy , Prenatal Exposure Delayed Effects , Reproduction , Tandem Mass Spectrometry , Testosterone
6.
Article in English | MEDLINE | ID: mdl-33802154

ABSTRACT

The increasing number of human biomonitoring (HBM) studies undertaken in recent decades has brought to light the need to harmonise procedures along all phases of the study, including sampling, data collection and analytical methods to allow data comparability. The first steps towards harmonisation are the identification and collation of HBM methodological information of existing studies and data gaps. Systematic literature reviews and meta-analyses have been traditionally put at the top of the hierarchy of evidence, being increasingly applied to map available evidence on health risks linked to exposure to chemicals. However, these methods mainly capture peer-reviewed articles, failing to comprehensively identify other important, unpublished sources of information that are pivotal to gather a complete map of the produced evidence in the area of HBM. Within the framework of the European Human Biomonitoring Initiative (HBM4EU) initiative-a project that joins 30 countries, 29 from Europe plus Israel, the European Environment Agency and the European Commission-a comprehensive work of data triangulation has been made to identify existing HBM studies and data gaps across countries within the consortium. The use of documentary analysis together with an up-to-date platform to fulfil this need and its implications for research and practice are discussed.


Subject(s)
Biological Monitoring , Environmental Pollutants , Data Collection , Environmental Monitoring , Environmental Pollutants/analysis , Europe , Humans , Israel , Meta-Analysis as Topic , Systematic Reviews as Topic
7.
Pharmacol Rep ; 73(2): 386-404, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33460007

ABSTRACT

During the period of mass industrial production of plastic products, the quality of human health has decreased significantly, especially in children's neurodevelopmental disorders. Phthalates are endocrine-disrupting chemicals that can induce neurological disorders. This review aims to compile evidence concerning the associations between neurological disorders, such as attention-deficit/hyperactivity disorder, autism spectrum disorder, decreased masculine behavior, and phthalate exposure. Phthalates dysregulate the hypothalamic-pituitary-gonadal, adrenal, and thyroid axis, which is crucial for the neurodevelopmental process. Phthalates interfere with nuclear receptors in various neural structures involved in controlling brain functions and the onset of neurological disorders at the intracellular level. It is critical to increase the current knowledge concerning phthalates' toxicity mechanism to comprehend their harmful effect on human health.


Subject(s)
Endocrine Disruptors/toxicity , Nervous System Diseases/chemically induced , Phthalic Acids/toxicity , Animals , Brain/drug effects , Brain/physiopathology , Child , Environmental Pollutants/toxicity , Humans , Nervous System Diseases/physiopathology
8.
Article in English | MEDLINE | ID: mdl-32961939

ABSTRACT

The production of plastic products, which requires phthalate plasticizers, has resulted in the problems for human health, especially that of reproductive health. Phthalate exposure can induce reproductive disorders at various regulatory levels. The aim of this review was to compile the evidence concerning the association between phthalates and reproductive diseases, phthalates-induced reproductive disorders, and their possible endocrine and intracellular mechanisms. Phthalates may induce alterations in puberty, the development of testicular dysgenesis syndrome, cancer, and fertility disorders in both males and females. At the hormonal level, phthalates can modify the release of hypothalamic, pituitary, and peripheral hormones. At the intracellular level, phthalates can interfere with nuclear receptors, membrane receptors, intracellular signaling pathways, and modulate gene expression associated with reproduction. To understand and to treat the adverse effects of phthalates on human health, it is essential to expand the current knowledge concerning their mechanism of action in the organism.


Subject(s)
Environmental Pollutants , Phthalic Acids , Reproductive Health , Environmental Pollutants/toxicity , Female , Humans , Male , Phthalic Acids/toxicity , Plasticizers
9.
Article in English | MEDLINE | ID: mdl-32260494

ABSTRACT

Despite increasing attention to the occupational risk of firefighters, little is known about phthalate exposure. In our study, we detected mono-isobutyl phthalate (MiBP), mono-n-buthyl phthalate (MnBP), mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono(2-ethyl-5-carboxypentyl) phthalate (5cx-MECPP), and mono(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP) in each urine sample. We detected positive association between MnBP, MiBP, mono-2-ethylhexyl phthalate (MEHP), 5OH-MEHP, 5oxo-MEHP, 5cx-MECPP, mono-isononyl phthalate (MiNP), the sum of low (∑LMWP) and high molecular-weight phthalates (∑HMWP). and Tiffeneau-Pinelli index (the ratio of forced expiratory volume in 1/ forced vital capacity; FEV1/FVC; p = 0.001-0.04) and the percent predicted value (%PV) of FEV1/FVC (p = 0.005-0.05) and negative association between MiNP and peak expiratory flow (PEF; r = -0.31; p = 0.084). We observed a positive association between phthalate metabolites (MnBP, 5OH-MEHP, 5oxo-MEHP, 5cx-MECPP, 2cx-MMHP, ∑LMWP, and ∑HMWP) and waist-to-hip ratio (WHR; p = 0.003-0.09) and body shape index (ABSI; p = 0.039-0.09) and a negative association between MnBP, ∑LMWP, and hip circumference (p = 0.005-0.02). We detected association between concentrations of 5OH-MEHP, 5cx-MECPP, 5oxo-MEHP, and MnBP and consumption of food heating in plastic material in microwave (p = 0.02-0.04) and between probands who ate margarines and vegetable fat packed in plastic containers and concentration of MMP (p = 0.03). Results of multivariate regression indicated that exposure to phthalates could be linked with changing body structure, which subsequently affects values of pulmonary functions in firefighters.


Subject(s)
Environmental Pollutants , Firefighters , Occupational Exposure , Phthalic Acids , Adult , Environmental Exposure , Environmental Monitoring , Environmental Pollutants/toxicity , Humans , Male , Phthalic Acids/toxicity , Slovakia , Vital Capacity
10.
Rev Environ Health ; 32(1-2): 211-214, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28231065

ABSTRACT

Phthalates are environmental pollutants that can enter the human body by ingestion, inhalation and dermal absorption. Food constitutes the most important source of human exposure to these chemicals. The aim of our study was the biological monitoring of exposure to eight phthalate metabolites in children (n=107), 10-12 years of age, living in eastern Slovakia. Additionally, we analysed some associations between anthropometric measures, questionnaire data (i.e. eating and drinking habits, practice of personal care products) and concentrations of phthalate metabolites. Because of the short half-life of phthalates, within 24-48 h, we used 24-h recalls to assess dietary intakes. We used high-performance liquid chromatography and tandem mass spectrometry for the analysis of spot urine samples to determine concentrations of phthalate metabolites mono-ethyl phthalate (MEP), mono-n-butyl phthalate, mono-iso-butyl phthalate, mono-benzyl phthalate (MBzP), mono (2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), mono-carboxy pentyl and mono (2-ethylhexyl) phthalate (MEHP). We found statistically significant association between consumer practices and concentration of some phthalate metabolites, concretely consumption of milk and dairy products with MBzP and margarine with MEP (p<0.01 in both cases) and margarine with 5oxo-MEHP, hot beverages with 5OH-MEHP, baguettes and semifinished products with MEP (p<0.05 in all cases). Further, we found relationship between use of cosmetic products and phthalate concentrations, nail polish application and MEP and use of body lotion and MEHP (p<0.05 in both cases). We concluded that consumer practices (including eating and drinking habits and personal care) represent the substantial source of phthalate exposure in Slovak children.


Subject(s)
Environmental Exposure , Environmental Pollutants/metabolism , Life Style , Phthalic Acids/metabolism , Child , Chromatography, High Pressure Liquid , Environmental Monitoring , Female , Humans , Male , Slovakia , Tandem Mass Spectrometry
11.
Environ Sci Pollut Res Int ; 23(23): 24125-24134, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27640056

ABSTRACT

The aim of our work was to find associations between urinary phthalate metabolite concentrations and occupation, consumer practices and body composition. We divided our cohort (n = 129) into occupationally exposed subjects, community service workers (group A; n = 45) and workers from plastic industry (group B; n = 35) and group of general population (control group C, n = 49). To estimate levels of five phthalate metabolites, we used high-performance liquid chromatography and tandem mass spectrometry analysis. We found in plastic industry workers compared to community service workers and subjects of the control group significantly higher urinary concentration mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono (2-ethyl-5-oxohexyl) phthalate (MEOHP), mono (2-etylhexyl) phthalate (MEHP), sum di-(2-ethyl-5-oxohexyl) phthalate (DEHP), mono-iso-butyl phthalate (MiBP) and mono-n-butyl phthalate (MnBP). We identified by multivariate analysis of covariance inverse relationship between MEHP and body parameters as waist-to-height ratio, body mass index, waist-to-hip ratio, hip circumference and waist circumference among females, whereas in males, no significant association was found. Results of our study show, despite of variability in terms of occupational exposure to phthalates, that plastic manufactory represents a higher occupational risk in comparison with waste management. The differences in anthropometric parameters between the two occupationally exposed groups and the general population are suggesting a detrimental effect of occupational exposure on body weight homeostasis.


Subject(s)
Body Composition , Occupational Exposure/adverse effects , Phthalic Acids/metabolism , Adult , Body Composition/drug effects , Body Weight/drug effects , Chromatography, High Pressure Liquid , Cohort Studies , Female , Humans , Male , Mass Spectrometry , Middle Aged , Molecular Structure , Occupational Exposure/analysis , Phthalic Acids/chemistry , Phthalic Acids/toxicity , Plastics/chemistry , Plastics/metabolism , Plastics/toxicity , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...