Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(20): 6031-6037, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717626

ABSTRACT

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.

2.
Commun Biol ; 6(1): 844, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37580382

ABSTRACT

Cerebral blood flow (CBF) is crucial for brain health. Speckle contrast optical spectroscopy (SCOS) is a technique that has been recently developed to measure CBF, but the use of SCOS to measure human brain function at large source-detector separations with comparable or greater sensitivity to cerebral rather than extracerebral blood flow has not been demonstrated. We describe a fiber-based SCOS system capable of measuring human brain activation induced CBF changes at 33 mm source detector separations using CMOS detectors. The system implements a pulsing strategy to improve the photon flux and uses a data processing pipeline to improve measurement accuracy. We show that SCOS outperforms the current leading optical modality for measuring CBF, i.e. diffuse correlation spectroscopy (DCS), achieving more than 10x SNR improvement at a similar financial cost. Fiber-based SCOS provides an alternative approach to functional neuroimaging for cognitive neuroscience and health science applications.


Subject(s)
Brain Ischemia , Brain , Humans , Spectrum Analysis , Cerebrovascular Circulation/physiology , Hemodynamics
3.
J Biomed Opt ; 28(5): 057001, 2023 05.
Article in English | MEDLINE | ID: mdl-37168688

ABSTRACT

Significance: Diffuse correlation spectroscopy (DCS) is an indispensable tool for quantifying cerebral blood flow noninvasively by measuring the autocorrelation function (ACF) of the diffused light. Recently, a multispeckle DCS approach was proposed to scale up the sensitivity with the number of independent speckle measurements, leveraging the rapid development of single-photon avalanche diode (SPAD) cameras. However, the extremely high data rate from advanced SPAD cameras is beyond the data transfer rate commonly available and requires specialized high-performance computation to calculate large number of autocorrelators (ACs) for real-time measurements. Aim: We aim to demonstrate a data compression scheme in the readout field-programmable gate array (FPGA) of a large-pixel-count SPAD camera. On-FPGA, data compression should democratize SPAD cameras and streamline system integration for multispeckle DCS. Approach: We present a 192×128 SPAD array with 128 linear ACs embedded on an FPGA to calculate 12,288 ACFs in real time. Results: We achieved a signal-to-noise ratio (SNR) gain of 110 over a single-pixel DCS system and more than threefold increase in SNR with respect to the state-of-the-art multispeckle DCS. Conclusions: The FPGA-embedded autocorrelation algorithm offers a scalable data compression method to large SPAD array, which can improve the sensitivity and usability of multispeckle DCS instruments.


Subject(s)
Data Compression , Spectrum Analysis , Photons , Algorithms , Signal-To-Noise Ratio
4.
Biomed Opt Express ; 14(4): 1594-1607, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37078049

ABSTRACT

Non-invasive continuous blood pressure monitoring remains elusive. There has been extensive research using the photoplethysmographic (PPG) waveform for blood pressure estimation, but improvements in accuracy are still needed before clinical use. Here we explored the use of an emerging technique, speckle contrast optical spectroscopy (SCOS), for blood pressure estimation. SCOS provides measurements of both blood volume changes (PPG) and blood flow index (BFi) changes during the cardiac cycle, and thus provides a richer set of parameters compared to traditional PPG. SCOS measurements were taken on the finger and wrists of 13 subjects. We investigated the correlations between features extracted from both the PPG and BFi waveforms with blood pressure. Features from the BFi waveforms were more significantly correlated with blood pressure than PPG features ( R = - 0.55, p = 1.1 × 10-4 for the top BFi feature versus R = - 0.53, p = 8.4 × 10-4 for the top PPG feature). Importantly, we also found that features combining BFi and PPG data were highly correlated with changes in blood pressure ( R = - 0.59, p = 1.7 × 10-4 ). These results suggest that the incorporation of BFi measurements should be further explored as a means to improve blood pressure estimation using non-invasive optical techniques.

5.
Biomed Opt Express ; 14(2): 703-713, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36874503

ABSTRACT

Diffuse correlation spectroscopy (DCS) is a promising noninvasive technique for monitoring cerebral blood flow and measuring cortex functional activation tasks. Taking multiple parallel measurements has been shown to increase sensitivity, but is not easily scalable with discrete optical detectors. Here we show that with a large 500 × 500 SPAD array and an advanced FPGA design, we achieve an SNR gain of almost 500 over single-pixel mDCS performance. The system can also be reconfigured to sacrifice SNR to decrease correlation bin width, with 400 ns resolution being demonstrated over 8000 pixels.

6.
Nano Lett ; 23(6): 2287-2294, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36898060

ABSTRACT

Strong coupling between light and mechanical strain forms the foundation for next-generation optical micro- and nano-electromechanical systems. Such optomechanical responses in two-dimensional materials present novel types of functionalities arising from the weak van der Waals bond between atomic layers. Here, by using structure-sensitive megaelectronvolt ultrafast electron diffraction, we report the experimental observation of optically driven ultrafast in-plane strain in the layered group IV monochalcogenide germanium sulfide (GeS). Surprisingly, the photoinduced structural deformation exhibits strain amplitudes of order 0.1% with a 10 ps fast response time and a significant in-plane anisotropy between zigzag and armchair crystallographic directions. Rather than arising due to heating, experimental and theoretical investigations suggest deformation potentials caused by electronic density redistribution and converse piezoelectric effects generated by photoinduced electric fields are the dominant contributors to the observed dynamic anisotropic strains. Our observations define new avenues for ultrafast optomechanical control and strain engineering within functional devices.

7.
J Biomed Opt ; 27(8)2022 02.
Article in English | MEDLINE | ID: mdl-35199501

ABSTRACT

SIGNIFICANCE: Diffuse correlation spectroscopy (DCS) is an optical technique that measures blood flow non-invasively and continuously. The time-domain (TD) variant of DCS, namely, TD-DCS has demonstrated a potential to improve brain depth sensitivity and to distinguish superficial from deeper blood flow by utilizing pulsed laser sources and a gating strategy to select photons with different pathlengths within the scattering tissue using a single source-detector separation. A quantitative tool to predict the performance of TD-DCS that can be compared with traditional continuous wave DCS (CW-DCS) currently does not exist but is crucial to provide guidance for the continued development and application of these DCS systems. AIMS: We aim to establish a model to simulate TD-DCS measurements from first principles, which enables analysis of the impact of measurement noise that can be utilized to quantify the performance for any particular TD-DCS system and measurement geometry. APPROACH: We have integrated the Monte Carlo simulation describing photon scattering in biological tissue with the wave model that calculates the speckle intensity fluctuations due to tissue dynamics to simulate TD-DCS measurements from first principles. RESULTS: Our model is capable of simulating photon counts received at the detector as a function of time for both CW-DCS and TD-DCS measurements. The effects of the laser coherence, instrument response function, detector gate delay, gate width, intrinsic noise arising from speckle statistics, and shot noise are incorporated in the model. We have demonstrated the ability of our model to simulate TD-DCS measurements under different conditions, and the use of our model to compare the performance of TD-DCS and CW-DCS under a few typical measurement conditions. CONCLUSION: We have established a Monte Carlo-Wave model that is capable of simulating CW-DCS and TD-DCS measurements from first principles. In our exploration of the parameter space, we could not find realistic measurement conditions under which TD-DCS outperformed CW-DCS. However, the parameter space for the optimization of the contrast to noise ratio of TD-DCS is large and complex, so our results do not imply that TD-DCS cannot indeed outperform CW-DCS under different conditions. We made our code available publicly for others in the field to find use cases favorable to TD-DCS. TD-DCS also provides a promising way to measure deep brain tissue dynamics using a short source-detector separation, which will benefit the development of technologies including high density DCS systems and image reconstruction using a limited number of source-detector pairs.


Subject(s)
Hemodynamics , Photons , Computer Simulation , Monte Carlo Method , Spectrum Analysis
8.
Biomed Opt Express ; 13(12): 6533-6549, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36589566

ABSTRACT

We introduce a dynamic speckle model (DSM) to simulate the temporal evolution of fully developed speckle patterns arising from the interference of scattered light reemitted from dynamic tissue. Using this numerical tool, the performance of laser speckle contrast imaging (LSCI) or speckle contrast optical spectroscopy (SCOS) systems which quantify tissue dynamics using the spatial contrast of the speckle patterns with a certain camera exposure time is evaluated. We have investigated noise sources arising from the fundamental speckle statistics due to the finite sampling of the speckle patterns as well as those induced by experimental measurement conditions including shot noise, camera dark and read noise, and calibrated the parameters of an analytical noise model initially developed in the fundamental or shot noise regime that quantifies the performance of SCOS systems using the number of independent observables (NIO). Our analysis is particularly focused on the low photon flux regime relevant for human brain measurements, where the impact of shot noise and camera read noise can become significant. Our numerical model is also validated experimentally using a novel fiber based SCOS (fb-SCOS) system for a dynamic sample. We have found that the signal-to-noise ratio (SNR) of fb-SCOS measurements plateaus at a camera exposure time, which marks the regime where shot and fundamental noise dominates over camera read noise. For a fixed total measurement time, there exists an optimized camera exposure time if temporal averaging is utilized to improve SNR. For a certain camera exposure time, photon flux value, and camera noise properties, there exists an optimized speckle-to-pixel size ratio (s/p) at which SNR is maximized. Our work provides the design principles for any LSCI or SCOS systems given the detected photon flux and properties of the instruments, which will guide the experimental development of a high-quality, low-cost fb-SCOS system that monitors human brain blood flow and functions.

9.
Phys Rev Lett ; 127(22): 227401, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34889631

ABSTRACT

Engineering novel states of matter with light is at the forefront of materials research. An intensely studied direction is to realize broken-symmetry phases that are "hidden" under equilibrium conditions but can be unleashed by an ultrashort laser pulse. Despite a plethora of experimental discoveries, the nature of these orders and how they transiently appear remain unclear. To this end, we investigate a nonequilibrium charge density wave (CDW) in rare-earth tritellurides, which is suppressed in equilibrium but emerges after photoexcitation. Using a pump-pump-probe protocol implemented in ultrafast electron diffraction, we demonstrate that the light-induced CDW consists solely of order parameter fluctuations, which bear striking similarities to critical fluctuations in equilibrium despite differences in the length scale. By calculating the dynamics of CDW fluctuations in a nonperturbative model, we further show that the strength of the light-induced order is governed by the amplitude of equilibrium fluctuations. These findings highlight photoinduced fluctuations as an important ingredient for the emergence of transient orders out of equilibrium. Our results further suggest that materials with strong fluctuations in equilibrium are promising platforms to host hidden orders after laser excitation.

10.
Neurophotonics ; 8(3): 035004, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34368390

ABSTRACT

Significance: Diffuse correlation spectroscopy (DCS) measures cerebral blood flow non-invasively. Variations in blood flow can be used to detect neuronal activities, but its peak has a latency of a few seconds, which is slow for real-time monitoring. Neuronal cells also deform during activation, which, in principle, can be utilized to detect neuronal activity on fast timescales (within 100 ms) using DCS. Aims: We aim to characterize DCS signal variation quantified as the change of the decay time of the speckle intensity autocorrelation function during neuronal activation on both fast (within 100 ms) and slow (100 ms to seconds) timescales. Approach: We extensively modeled the variations in the DCS signal that are expected to arise from neuronal activation using Monte Carlo simulations, including the impacts of neuronal cell motion, vessel wall dilation, and blood flow changes. Results: We found that neuronal cell motion induces a DCS signal variation of ∼ 10 - 5 . We also estimated the contrast and number of channels required to detect hemodynamic signals at different time delays. Conclusions: From this extensive analysis, we do not expect to detect neuronal cell motion using DCS in the near future based on current technology trends. However, multi-channel DCS will be able to detect hemodynamic response with sub-second latency, which is interesting for brain-computer interfaces.

11.
Phys Rev Lett ; 126(22): 227401, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34152161

ABSTRACT

A phonoriton is an elementary excitation that is predicted to emerge from hybridization between exciton, phonon, and photon. Besides the intriguing many-particle structure, phonoritons are of interest as they could serve as functional nodes in devices that utilize electronic, phononic, and photonic elements for energy conversion and thermal transport applications. Although phonoritons are predicted to emerge in an excitonic medium under intense electromagnetic wave irradiation, the stringent condition for their existence has eluded direct observation in solids. In particular, on-resonance, intense pumping schemes have been proposed, but excessive photoexcitation of carriers prevents optical detection. Here, we theoretically predict the appearance of phonoritonic features in monolayer hexagonal boron nitride (h-BN) embedded in an optical cavity. The coherent superposition nature of phonoriton states is evidenced by the hybridization of exciton-polariton branches with phonon replicas that is tunable by the cavity-matter coupling strength. This finding simultaneously provides an experimental pathway for observing the predicted phonoritons and opens a new avenue for tuning materials properties.

12.
Opt Lett ; 46(4): 924-927, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33577549

ABSTRACT

Functional near-infrared spectroscopy (fNIRS) measures human brain function noninvasively. The optical response to oxy- and deoxy-hemoglobin concentration variations during brain activation is wavelength dependent because of the differing spectral shapes of the extinction coefficients of the two hemoglobin species. Choosing the optimal wavelength in fNIRS measurements is crucial to improving the performance of the technique. Here we report on a framework to estimate the spectral response to neural activation in a pre-defined local region. We found that the wavelength that exhibits the largest fractional change in the detected fluence with respect to the baseline value is around 830 nm.


Subject(s)
Brain/physiology , Spectroscopy, Near-Infrared , Adult , Brain/metabolism , Hemoglobins/metabolism , Humans , Optical Phenomena
13.
Neurophotonics ; 7(3): 035010, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32995362

ABSTRACT

Significance: Cerebral blood flow is an important biomarker of brain health and function as it regulates the delivery of oxygen and substrates to tissue and the removal of metabolic waste products. Moreover, blood flow changes in specific areas of the brain are correlated with neuronal activity in those areas. Diffuse correlation spectroscopy (DCS) is a promising noninvasive optical technique for monitoring cerebral blood flow and for measuring cortex functional activation tasks. However, the current state-of-the-art DCS adoption is hindered by a trade-off between sensitivity to the cortex and signal-to-noise ratio (SNR). Aim: We aim to develop a scalable method that increases the sensitivity of DCS instruments. Approach: We report on a multispeckle DCS (mDCS) approach that is based on a 1024-pixel single-photon avalanche diode (SPAD) camera. Our approach is scalable to > 100,000 independent speckle measurements since large-pixel-count SPAD cameras are becoming available, owing to the investments in LiDAR technology for automotive and augmented reality applications. Results: We demonstrated a 32-fold increase in SNR with respect to traditional single-speckle DCS. Conclusion: A mDCS system that is based on a SPAD camera serves as a scalable method toward high-sensitivity DCS measurements, thus enabling both high sensitivity to the cortex and high SNR.

14.
Rev Sci Instrum ; 91(4): 043102, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32357712

ABSTRACT

Performing time- and angle-resolved photoemission (tr-ARPES) spectroscopy at high momenta necessitates extreme ultraviolet laser pulses, which are typically produced via high harmonic generation (HHG). Despite recent advances, HHG-based setups still require large pulse energies (from hundreds of µJ to mJ) and their energy resolution is limited to tens of meV. Here, we present a novel 11 eV tr-ARPES setup that generates a flux of 5 × 1010 photons/s and achieves an unprecedented energy resolution of 16 meV. It can be operated at high repetition rates (up to 250 kHz) while using input pulse energies down to 3 µJ. We demonstrate these unique capabilities by simultaneously capturing the energy and momentum resolved dynamics in two well-separated momentum space regions of a charge density wave material ErTe3. This novel setup offers the opportunity to study the non-equilibrium band structure of solids with exceptional energy and time resolutions at high repetition rates.

15.
Nat Commun ; 10(1): 3535, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31388015

ABSTRACT

High harmonic generation of ultrafast laser pulses can be used to perform angle-resolved photoemission spectroscopy (ARPES) to map the electronic band structure of materials with femtosecond time resolution. However, currently it is difficult to reach high momenta with narrow energy resolution. Here, we combine a gas phase extreme ultraviolet (XUV) femtosecond light source, an XUV monochromator, and a time-of-flight electron analyzer to develop XUV-based time-resolved ARPES. Our technique can produce tunable photon energy between 24-33 eV with an unprecedented energy resolution of 30 meV and time resolution of 200 fs. This technique enables time-, energy- and momentum-resolved investigation of the nonequilibrium dynamics of electrons in materials with a full access to their first Brillouin zone. We evaluate the performance of this setup through exemplary measurements on various quantum materials, including WTe2, WSe2, TiSe2, and Bi2Sr2CaCu2O8+δ.

16.
Nature ; 565(7737): 61-66, 2019 01.
Article in English | MEDLINE | ID: mdl-30602749

ABSTRACT

Topological quantum materials exhibit fascinating properties1-3, with important applications for dissipationless electronics and fault-tolerant quantum computers4,5. Manipulating the topological invariants in these materials would allow the development of topological switching applications analogous to switching of transistors6. Lattice strain provides the most natural means of tuning these topological invariants because it directly modifies the electron-ion interactions and potentially alters the underlying crystalline symmetry on which the topological properties depend7-9. However, conventional means of applying strain through heteroepitaxial lattice mismatch10 and dislocations11 are not extendable to controllable time-varying protocols, which are required in transistors. Integration into a functional device requires the ability to go beyond the robust, topologically protected properties of materials and to manipulate the topology at high speeds. Here we use crystallographic measurements by relativistic electron diffraction to demonstrate that terahertz light pulses can be used to induce terahertz-frequency interlayer shear strain with large strain amplitude in the Weyl semimetal WTe2, leading to a topologically distinct metastable phase. Separate nonlinear optical measurements indicate that this transition is associated with a symmetry change to a centrosymmetric, topologically trivial phase. We further show that such shear strain provides an ultrafast, energy-efficient way of inducing robust, well separated Weyl points or of annihilating all Weyl points of opposite chirality. This work demonstrates possibilities for ultrafast manipulation of the topological properties of solids and for the development of a topological switch operating at terahertz frequencies.

17.
Science ; 355(6329): 1066-1069, 2017 03 10.
Article in English | MEDLINE | ID: mdl-28280203

ABSTRACT

Coherent interaction with off-resonance light can be used to shift the energy levels of atoms, molecules, and solids. The dominant effect is the optical Stark shift, but there is an additional contribution from the so-called Bloch-Siegert shift that has eluded direct and exclusive observation in solids. We observed an exceptionally large Bloch-Siegert shift in monolayer tungsten disulfide (WS2) under infrared optical driving. By controlling the light helicity, we could confine the Bloch-Siegert shift to occur only at one valley, and the optical Stark shift at the other valley, because the two effects obey opposite selection rules at different valleys. Such a large and valley-exclusive Bloch-Siegert shift allows for enhanced control over the valleytronic properties of two-dimensional materials.

18.
Nano Lett ; 16(12): 7421-7426, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27960499

ABSTRACT

Coherent optical driving can effectively modify the properties of electronic valleys in transition metal dichalcogenides. Here, we observe a new type of optical Stark effect in monolayer WS2, one that is mediated by intervalley biexcitons under the blue-detuned driving with circularly polarized light. We find that such helical optical driving not only induces an exciton energy downshift at the excitation valley but also causes an anomalous energy upshift at the opposite valley, which is normally forbidden by the exciton selection rules but now made accessible through the intervalley biexcitons. These findings reveal the critical, but hitherto neglected, role of biexcitons to couple the two seemingly independent valleys, and to enhance the optical control in valleytronics.

19.
Nat Mater ; 14(3): 290-4, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25502098

ABSTRACT

Breaking space-time symmetries in two-dimensional crystals can markedly influence their macroscopic electronic properties. Monolayer transition metal dichalcogenides (TMDs) are prime examples where the intrinsically broken crystal inversion symmetry permits the generation of valley-selective electron populations, even though the two valleys are energetically degenerate, locked by time-reversal symmetry. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley-specific band engineering and offer additional control in valleytronic applications. Although applying a magnetic field should, in principle, accomplish this task, experiments so far have not shown valley-selective energy level shifts in fields accessible in the laboratory. Here, we show the first direct evidence of lifted valley degeneracy in the monolayer TMD WS2. By applying intense circularly polarized light, which breaks time-reversal symmetry, we demonstrate that the exciton level in each valley can be selectively tuned by as much as 18 meV through the optical Stark effect. These results offer a new way to control the valley degree of freedom, and may provide a means to realize new Floquet topological phases in two-dimensional TMDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...