Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(5): 2627-2639, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38243916

ABSTRACT

Tetradentate-N4 ligands stabilize dinuclear {CuII(µ-1,2-peroxo)CuII} and {CuIII(µ-O)2CuIII} species, and CuII complexes of these ligands were reported to catalyze the oxidation of benzene with H2O2. Here, we report {CuII(µ-1,2-peroxo)CuII} and {CuIII(µ-O)2CuIII} intermediates of dinucleating bis(tetradentate-N4) ligands depending on the absence or presence of 6-methyl substituents on the terminal pyridine donors, respectively, generated either from {CuICuI} precursors with O2 or from {CuIICuII} precursors with H2O2 and NEt3. Both intermediates are not stable even at low temperatures, but they show no electrophilic HAT reactivity with DHA. Catalytic investigations on the hydroxylation of benzene with excess H2O2 between 30 and 50 °C indicate that both radical-based and {Cu2On}-based mechanisms depend strongly on the catalytic conditions. In the presence of a radical scavenger, TONs of ∼920/∼720 have been achieved without/with the 6-methyl group of the ligand. Although {CuII(µ-OH)CuII} reacts with excess H2O2 at -40 °C to {CuII(OOH)}2 species, these are only stable for seconds at 20 °C and cannot account for catalytic oxidations over a period of 24 h at 30-50 °C.

2.
Inorg Chem ; 59(19): 14464-14477, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32951424

ABSTRACT

Cytostatic metallo-drugs mostly bind to the nucleobases of DNA. A new family of dinuclear transition metal complexes was rationally designed to selectively target the phosphate diesters of the DNA backbone by covalent bonding. The synthesis and characterization of the first dinuclear NiII2 complex of this family are presented, and its DNA binding and interference with DNA synthesis in polymerase chain reaction (PCR) are investigated and compared to those of the analogous CuII2 complex. The NiII2 complex also binds to DNA but forms fewer intermolecular DNA cross-links, while it interferes with DNA synthesis in PCR at lower concentrations than CuII2. To simulate possible competing phosphate-based ligands in vivo, these effects have been studied for both complexes with 100-200-fold excesses of phosphate and ATP, which provided no disturbance. The cytotoxicity of both complexes has been studied for human cancer cells and human stem cells with similar rates of proliferation. CuII2 shows the lowest IC50 values and a remarkable preference for killing the cancer cells. Three different assays show that the CuII2 complex induces apoptosis in cancer cells. These results are discussed to gain insight into the mechanisms of action and demonstrate the potential of this family of dinuclear complexes as anticancer drugs acting by a new binding target.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Drug Design , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Copper/chemistry , Humans , Nickel/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL