Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Am J Obstet Gynecol ; 227(6): 885.e1-885.e12, 2022 12.
Article in English | MEDLINE | ID: mdl-35934119

ABSTRACT

BACKGROUND: Early natural menopause has been regarded as a biomarker of reproductive and somatic aging. Cigarette smoking is the most harmful factor for lung health and also an established risk factor for early menopause. Understanding the effect of early menopause on health outcomes in middle-aged and older female smokers is important to develop preventive strategies. OBJECTIVE: This study aimed to examine the associations of early menopause with multiple lung health and aging biomarkers, lung cancer risk, and all-cause and cause-specific mortality in postmenopausal women who were moderate or heavy smokers. STUDY DESIGN: This study was conducted on postmenopausal women with natural (n=1038) or surgical (n=628) menopause from the Pittsburgh Lung Screening Study. The Pittsburgh Lung Screening Study is a community-based research cohort of current and former smokers, screened with low-dose computed tomography and followed up for lung cancer. Early menopause was defined as occurring before 45 years of age. The analyses were stratified by menopause types because of the different biological and medical causes of natural and surgical menopause. Statistical methods included linear model, generalized linear model, linear mixed-effects model, and time-to-event analysis. RESULTS: The average age of the 1666 female smokers was 59.4±6.7 years, with 1519 (91.2%) of the population as non-Hispanic Whites and 1064 (63.9%) of the population as current smokers at baseline. Overall, 646 (39%) women reported early menopause, including 198 (19.1%) women with natural menopause and 448 (71.3%) women with surgical menopause (P<.001). Demographic variables did not differ between early and nonearly menopause groups, regardless of menopause type. Significant associations were identified between early natural menopause and higher risk of wheezing (odds ratio, 1.65; P<.01), chronic bronchitis (odds ratio, 1.73; P<.01), and radiographic emphysema (odds ratio, 1.70; P<.001) and lower baseline lung spirometry in an obstructive pattern (-104.8 mL/s for forced expiratory volume in the first second with P<.01, -78.6 mL for forced vital capacity with P=.04, and -2.1% for forced expiratory volume in the first second-to-forced vital capacity ratio with P=.01). In addition, early natural menopause was associated with a more rapid decline of forced expiratory volume in the first second-to-forced vital capacity ratio (-0.16% per year; P=.01) and incident airway obstruction (odds ratio, 2.02; P=.04). Furthermore, women early natural menopause had a 40% increased risk of death (P=.023), which was mainly driven by respiratory diseases (hazard ratio, 2.32; P<.001). Mediation analyses further identified that more than 33.3% of the magnitude of the associations between early natural menopause and all-cause and respiratory mortality were explained by baseline forced expiratory volume in the first second. Additional analyses in women with natural menopause identified that the associations between continuous smoking and subsequent lung cancer risk and cancer mortality were moderated by early menopause status, and females with early natural menopause who continued smoking had the worst outcomes (hazard ratio, >4.6; P<.001). This study did not find associations reported above in female smokers with surgical menopause. CONCLUSION: Early natural menopause was found to be a risk factor for malignant and nonmalignant lung diseases and mortality in middle-aged and older female smokers. These findings have strong public health relevance as preventive strategies, including smoking cessation and chest computed tomography screening, should target this population (ie, female smokers with early natural menopause) to improve their postmenopausal health and well-being.


Subject(s)
Lung Neoplasms , Menopause, Premature , Middle Aged , Female , Humans , Aged , Male , Smokers , Forced Expiratory Volume , Lung , Menopause
3.
Endocrinology ; 163(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-34927202

ABSTRACT

Two highly prevalent pulmonary diseases, lung cancer and chronic obstructive lung disease (COPD), show both sex and gender differences in their presentations and outcomes. Sex differences are defined as biological differences associated with the male vs female genotype, and gender differences are defined as behavioral or social differences that primarily arise because of gender identity. The incidence of both lung cancer and COPD has increased dramatically in women over the past 50 years, and both are associated with chronic pulmonary inflammation. Development of COPD is also a risk factor for lung cancer. In this review, the main differences in lung cancer and COPD biology observed between men and women will be summarized. Potential causative factors will be discussed, including the role of estrogen in promoting pro-growth and inflammatory phenotypes which may contribute to development of both lung cancer and COPD. Response of the innate and adaptive immune system to estrogen is a likely factor in the biology of both lung cancer and COPD. Estrogen available from synthesis by reproductive organs as well as local pulmonary estrogen synthesis may be involved in activating estrogen receptors expressed by multiple cell types in the lung. Estrogenic actions, although more pronounced in women, may also have importance in the biology of lung cancer and COPD in men. Effects of estrogen are also timing and context dependent; the multiple cell types that mediate estrogen action in the lungs may confer both positive and negative effects on disease processes.


Subject(s)
Lung Neoplasms/epidemiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Sex Characteristics , Sex Factors , Age Factors , Animals , Estrogen Replacement Therapy , Estrogens/physiology , Female , Humans , Immune System , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Prognosis , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Smoking/epidemiology
4.
J Cancer Prev ; 26(1): 71-82, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33842408

ABSTRACT

The Division of Cancer Prevention of the National Cancer Institute (NCI) and the Office of Disease Prevention of the National Institutes of Health co-sponsored the Translational Advances in Cancer Prevention Agent Development Meeting on August 27 to 28, 2020. The goals of this meeting were to foster the exchange of ideas and stimulate new collaborative interactions among leading cancer prevention researchers from basic and clinical research; highlight new and emerging trends in immunoprevention and chemoprevention as well as new information from clinical trials; and provide information to the extramural research community on the significant resources available from the NCI to promote prevention agent development and rapid translation to clinical trials. The meeting included two plenary talks and five sessions covering the range from pre-clinical studies with chemo/immunopreventive agents to ongoing cancer prevention clinical trials. In addition, two NCI informational sessions describing contract resources for the preclinical agent development and cooperative grants for the Cancer Prevention Clinical Trials Network were also presented.

5.
Int J Mol Sci ; 23(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35008514

ABSTRACT

High ERß/HER oncogenic signaling defines lung tumors with an aggressive biology. We previously showed that combining the anti-estrogen fulvestrant with the pan-HER inhibitor dacomitinib reduced ER/HER crosstalk and produced synergistic anti-tumor effects in immunocompromised lung cancer models, including KRAS mutant adenocarcinoma. How this combination affects the tumor microenvironment (TME) is not known. We evaluated the effects of fulvestrant and dacomitinib on murine bone marrow-derived macrophages (BMDMs) and CD8+ T cells, and tested the efficacy of the combination in vivo, using the KRAS mutant syngeneic lung adenocarcinoma model, FVBW-17. While this combination synergistically inhibited proliferation of FVBW-17 cells, it had unwanted effects on immune cells, by reducing CD8+ T cell activity and phagocytosis in BMDMs and inducing PD-1. The effects were largely attributed to dacomitinib, which caused downregulation of Src family kinases and Syk in immune cells. In a subcutaneous flank model, the combination induced an inflamed TME with increased myeloid cells and CD8+ T cells and enhanced PD-1 expression in the splenic compartment. Concomitant administration of anti-PD-1 antibody with fulvestrant and dacomitinib was more efficacious than fulvestrant plus dacomitinib alone. Administering anti-PD-1 sequentially after fulvestrant plus dacomitinib was synergistic, with a two-fold greater tumor inhibitory effect compared to concomitant therapy, in both the flank model and in a lung metastasis model. Sequential triple therapy has potential for treating lung cancer that shows limited response to current therapies, such as KRAS mutant lung adenocarcinoma.


Subject(s)
Estrogen Receptor beta/genetics , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, ErbB-2/genetics , Tumor Microenvironment/genetics , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Carcinogenesis/genetics , Carcinogenesis/immunology , Cell Line, Tumor , Estrogen Receptor beta/immunology , Female , Humans , Immunotherapy/methods , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Macrophages/drug effects , Macrophages/immunology , Mice , Oncogenes/genetics , Oncogenes/immunology , Programmed Cell Death 1 Receptor/genetics , Proto-Oncogene Proteins p21(ras)/immunology , Quinazolinones/pharmacology , Receptor, ErbB-2/immunology , Tumor Microenvironment/immunology
6.
J Med Chem ; 63(18): 10235-10245, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32852209

ABSTRACT

Overexpression of the epidermal growth factor receptor (EGFR) on various cancers makes it an important target for cancer immunotherapy. We recently demonstrated that single-chain variable fragment-based bispecific chemically self-assembled nanorings (CSANs) can successfully modify T cell surfaces and function as prosthetic antigen receptors (PARs) allowing selective targeting of tumor antigens while incorporating a dissociation mechanism of the rings. Here, we report the generation of anti-EGFR fibronectin (FN3)-based PARs with high yield, rapid protein production, predicted low immunogenicity, and increased protein stability. We demonstrated the cytotoxicity of FN3-PARs successfully while evaluating FN3 affinities, CSAN valencies, and antigen expression levels. Using an orthotopic breast cancer model, we showed that FN3-PARs can suppress tumor growth with no adverse effects and FN3-PARs reduced immunosuppressive programmed cell death ligand-1 (PD-L1) expression by downregulating EGFR signaling. These results demonstrate the potential of FN3-PARs to direct selective T cell-targeted tumor killing and to enhance antitumor T cell efficacy by modulating the tumor microenvironment.


Subject(s)
Antibodies, Bispecific/therapeutic use , Fibronectins/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/therapy , Single-Chain Antibodies/therapeutic use , T-Lymphocytes/metabolism , Animals , Antibodies, Bispecific/immunology , B7-H1 Antigen/antagonists & inhibitors , CD3 Complex/immunology , Cell Line, Tumor , Down-Regulation , ErbB Receptors/immunology , ErbB Receptors/metabolism , Female , Fibronectins/immunology , Humans , Immune Checkpoint Inhibitors/immunology , Mice, Inbred NOD , Mice, SCID , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction/drug effects , Single-Chain Antibodies/immunology
7.
Cancer Prev Res (Phila) ; 13(9): 735-746, 2020 09.
Article in English | MEDLINE | ID: mdl-32655003

ABSTRACT

The STAT3 pathway is frequently overactive in non-small cell lung cancer (NSCLC), an often fatal disease with known risk factors including tobacco and chemical exposures. Whether STAT3 can be downmodulated to delay or prevent development of lung cancer resulting from an environmental exposure has not been previously tested. A circular oligonucleotide STAT3 decoy (CS3D) was used to treat mice previously exposed to the tobacco carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. CS3D contains a double-stranded STAT3 DNA response element sequence and interrupts STAT3 signaling by binding to STAT3 dimers, rendering them unable to initiate transcription at native STAT3 DNA binding sites. An intermittent course of CS3D decreased the development of airway preneoplasias by 42% at 1 week posttreatment, reduced the progression of preneoplasia to adenomas by 54% at 8 weeks posttreatment, and reduced the size and number of resulting lung tumors by 49.7% and 29.5%, respectively, at 20 weeks posttreatment. No toxicity was detected. A mutant cyclic oligonucleotide with no STAT3 binding ability was used as a control. Chemopreventive effects were independent of the KRAS mutational status of the tumors. In lungs harvested during and after the treatment course with CS3D, airway preneoplasias had reduced STAT3 signaling. Chemopreventive effects were accompanied by decreased VEGFA expression, ablated IL6, COX-2, and p-NF-κB, and decreased pulmonary M2 macrophages and myeloid-derived suppressor cells. Thus, downmodulation of STAT3 activity using a decoy molecule both reduced oncogenic signaling in the airway epithelium and favored a lung microenvironment with reduced immunosuppression.


Subject(s)
Anticarcinogenic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/prevention & control , Lung Neoplasms/prevention & control , Nicotiana/toxicity , STAT3 Transcription Factor/antagonists & inhibitors , Animals , Anticarcinogenic Agents/therapeutic use , Butanones/toxicity , Carcinogenesis/chemically induced , Carcinogenesis/drug effects , Carcinogens/toxicity , Carcinoma, Non-Small-Cell Lung/chemically induced , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung/drug effects , Lung/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Mice , Mutation , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Neoplasms, Experimental/prevention & control , Nitrosamines/toxicity , Oligonucleotides/pharmacology , Oligonucleotides/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Nicotiana/chemistry , Transcriptional Activation/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
8.
J Thorac Oncol ; 15(1): 62-79, 2020 01.
Article in English | MEDLINE | ID: mdl-31606604

ABSTRACT

INTRODUCTION: Mounting evidence supports a role for estrogen signaling in NSCLC progression. We previously reported a seven-gene signature that predicts prognosis in estrogen receptor ß positive (ERß+) NSCLC. The signature defines a network comprised of ER and human EGFR-2/3 (HER2/HER3) signaling. METHODS: We tested the efficacy of combining the pan-HER inhibitor, dacomitinib, with the estrogen antagonist, fulvestrant, in ERß+ NSCLC models with differing genotypes. We assessed the potency of this combination on xenograft growth and survival of host mice, and the ability to reverse the gene signature associated with poor outcome. RESULTS: Synergy was observed between dacomitinib and fulvestrant in three human ERß+ NSCLC models: 201T (wild-type EGFR), A549 (KRAS mutant), and HCC827 (EGFR 19 deletion) with combination indices of 0.1-0.6. The combination, but not single agents, completely reversed the gene signature associated with poor prognosis in a mechanism that is largely mediated by activator protein 1 downregulation. In vivo, the combination also induced tumor regression and reversed the gene signature. In HCC827 xenografts treated with the combination, survival of mice was prolonged after therapy discontinuation, tumors that recurred were less aggressive, and two mechanisms of HER inhibitor resistance involving c-Met activation and PTEN loss were blocked. CONCLUSIONS: The combination of an ER blocker and a pan-HER inhibitor provides synergistic efficacy in different models of ERß+ NSCLC. Our data support the use of this combination clinically, considering its ability to induce potent antitumor effects and produce a gene signature that predicts better clinical outcomes.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm , Fulvestrant/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mice , Neoplasm Recurrence, Local , Signal Transduction , Xenograft Model Antitumor Assays
9.
Am J Respir Cell Mol Biol ; 60(6): 659-666, 2019 06.
Article in English | MEDLINE | ID: mdl-30562054

ABSTRACT

Altered expression of syndecan-2 (SDC2), a heparan sulfate proteoglycan, has been associated with diverse types of human cancers. However, the mechanisms by which SDC2 may contribute to the pathobiology of lung adenocarcinoma have not been previously explored. SDC2 levels were measured in human lung adenocarcinoma samples and lung cancer tissue microarrays using immunohistochemistry and real-time PCR. To understand the role of SDC2 in vitro, SDC2 was silenced or overexpressed in A549 lung adenocarcinoma cells. The invasive capacity of cells was assessed using Matrigel invasion assays and measuring matrix metalloproteinase (MMP) 9 expression. Finally, we assessed tumor growth and metastasis of SDC2-deficient A549 cells in a xenograft tumor model. SDC2 expression was upregulated in malignant epithelial cells and macrophages obtained from human lung adenocarcinomas. Silencing of SDC2 decreased MMP9 expression and attenuated the invasive capacity of A549 lung adenocarcinoma cells. The inhibitory effect of SDC2 silencing on MMP9 expression and cell invasion was reversed by overexpression of MMP9 and syntenin-1. SDC2 silencing attenuated NF-κB p65 subunit nuclear translocation and its binding to the MMP9 promoter, which were restored by overexpression of syntenin-1. SDC2 silencing in vivo reduced tumor mass volume and metastasis. These findings suggest that SDC2 plays an important role in the invasive properties of lung adenocarcinoma cells and that its effects are mediated by syntenin-1. Thus, inhibiting SDC2 expression or activity could serve as a potential therapeutic target to treat lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung/pathology , Lung Neoplasms/pathology , Syndecan-2/metabolism , A549 Cells , Adenocarcinoma of Lung/genetics , Animals , Cell Nucleus/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Lung Neoplasms/genetics , Matrix Metalloproteinase 9/metabolism , Mice, SCID , Neoplasm Invasiveness , Syntenins/metabolism , Transcription Factor RelA/metabolism , Up-Regulation/genetics
10.
Cancers (Basel) ; 10(9)2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30134579

ABSTRACT

Hepatocyte growth factor (HGF) is the ligand for the tyrosine kinase receptor c-Met (Mesenchymal Epithelial Transition Factor also known as Hepatocyte Growth Factor Receptor, HGFR), a receptor with expression throughout epithelial and endothelial cell types. Activation of c-Met enhances cell proliferation, invasion, survival, angiogenesis, and motility. The c-Met pathway also stimulates tissue repair in normal cells. A body of past research shows that increased levels of HGF and/or overexpression of c-Met are associated with poor prognosis in several solid tumors, including lung cancer, as well as cancers of the head and neck, gastro-intestinal tract, breast, ovary and cervix. The HGF/c-Met signaling network is complex; both ligand-dependent and ligand-independent signaling occur. This article will provide an update on signaling through the HGF/c-Met axis, the mechanism of action of HGF/c-Met inhibitors, the lung cancer patient populations most likely to benefit, and possible mechanisms of resistance to these inhibitors. Although c-Met as a target in non-small cell lung cancer (NSCLC) showed promise based on preclinical data, clinical responses in NSCLC patients have been disappointing in the absence of MET mutation or MET gene amplification. New therapeutics that selectively target c-Met or HGF, or that target c-Met and a wider spectrum of interacting tyrosine kinases, will be discussed.

11.
Lung Cancer ; 123: 91-98, 2018 09.
Article in English | MEDLINE | ID: mdl-30089602

ABSTRACT

OBJECTIVES: This open-label, randomized phase II trial evaluated antitumor efficacy of an antiestrogen, fulvestrant, in combination with human epidermal growth factor receptor (EGFR) inhibitor, erlotinib, in advanced non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS: Patients with advanced or metastatic NSCLC, ECOG 0-2, previous chemotherapy unless patient refusal, and no prior EGFR-directed therapy were randomized 2:1 to erlotinib 150 mg oral daily plus 500 mg intramuscular fulvestrant on day 1, 15, 29 and every 28 days thereafter or erlotinib alone 150 mg oral daily. The primary end point was objective response rate (ORR); secondary endpoints included progression free survival (PFS) and overall survival (OS). RESULTS: Among 106 randomized patients, 100 received at least one dose of study drug. ORR was 16.4% (11 of 67 patients) for the combination versus 12.1% (4 of 33 patients) for erlotinib (p = 0.77). PFS median 3.5 versus 1.9 months [HR = 0.86, 95% CI (0.52-1.43), p = 0.29] and OS median 9.5 versus 5.8 months [HR = 0.92, 95% CI (0.57-1.48), p = 0.74] numerically favored the combination. In an unplanned subset analysis, among EGFR wild type patients (n = 51), but not EGFR mutant patients (n = 17), median PFS was 3.5 versus 1.7 months [HR = 0.35, 95% CI (0.14-0.86), p = 0.02] and OS was 6.2 versus 5.2 months [HR = 0.72, 95% CI (0.35-1.48), p = 0.37] for combined therapy versus erlotinib, respectively. Notably, EGFR WT patients were more likely to be hormone receptor-positive (either estrogen receptor α- and/or progesterone receptor-positive) compared to EGFR mutant patients (50% versus 9.1%, respectively) (p = 0.03). Treatment was well tolerated with predominant grade 1-2 dermatologic and gastrointestinal adverse effects. CONCLUSION: Addition of fulvestrant to erlotinib was well tolerated, with increased activity noted among EGFR wild type patients compared to erlotinib alone, albeit in an unplanned subset analysis.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Erlotinib Hydrochloride/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/mortality , Erlotinib Hydrochloride/administration & dosage , Female , Fulvestrant/administration & dosage , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Male , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Survival Analysis , Treatment Outcome
12.
Mol Cancer Ther ; 17(9): 1917-1926, 2018 09.
Article in English | MEDLINE | ID: mdl-29891486

ABSTRACT

Constitutively activated STAT3 plays a critical role in non-small cell lung carcinoma (NSCLC) progression by mediating proliferation and survival. STAT3 activation in normal cells is transient, making it an attractive target for NSCLC therapy. The therapeutic potential of blocking STAT3 in NSCLC was assessed utilizing a decoy approach by ligating a double-stranded 15-mer oligonucleotide that corresponds to the STAT3 response element of STAT3-target genes, to produce a cyclic STAT3 decoy (CS3D). The decoy was evaluated using NSCLC cells containing either wild-type EGFR (201T) or mutant EGFR with an additional EGFRi resistance mutation (H1975). These cells are resistant to EGFR inhibitors and require an alternate therapeutic approach. CS3D activity was compared with an inactive cyclic control oligonucleotide (CS3M) that differs by a single base pair, rendering it unable to bind to STAT3 protein. Transfection of 0.3 µmol/L of CS3D caused a 50% inhibition in proliferation in 201T and H1975 cells, relative to CS3M, and a 2-fold increase in apoptotic cells. Toxicity was minimal in normal cells. CS3D treatment caused a significant reduction of mRNA and protein expression of the STAT3 target gene c-Myc and inhibited colony formation by 70%. The active decoy decreased the nuclear pool of STAT3 compared with the mutant. In a xenograft model, treatments with CS3D (5 mg/kg) caused a potent 96.5% and 81.7% reduction in tumor growth in 201T (P < 0.007) and H1975 models (P < 0.0001), respectively, and reduced c-Myc and p-STAT3 proteins. Targeting STAT3 with the cyclic decoy could be an effective therapeutic strategy for NSCLC. Mol Cancer Ther; 17(9); 1917-26. ©2018 AACR.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , ErbB Receptors/metabolism , Lung Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , ErbB Receptors/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mice, Nude , Mutation , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , STAT3 Transcription Factor/genetics , Xenograft Model Antitumor Assays/methods
13.
Am J Respir Crit Care Med ; 198(2): 187-196, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29437466

ABSTRACT

RATIONALE: Gene promoter hypermethylation detected in sputum assesses the extent of field cancerization and predicts lung cancer (LC) risk in ever-smokers. A rapid decline of FEV1 is a major driver for development of airway obstruction. OBJECTIVES: To assess the effects of methylation of 12 genes on FEV1 decline and of FEV1 decline on subsequent LC incidence using two independent, longitudinal cohorts (i.e., LSC [Lovelace Smokers Cohort] and PLuSS [Pittsburgh Lung Screening Study]). METHODS: Gene methylation was measured in sputum using two-stage nested methylation-specific PCR. The linear mixed effects model was used to assess the effects of studied variables on FEV1 decline. MEASUREMENTS AND MAIN RESULTS: A dose-dependent relationship between number of genes methylated and FEV1 decline was identified, with smokers with three or more methylated genes having 27.8% and 10.3% faster FEV1 decline than smokers with zero to two methylated genes in the LSC and PLuSS cohort, respectively (all P < 0.01). High methylation in sputum was associated with a shorter latency for LC incidence (log-rank P = 0.0048) and worse all-cause mortality (log-rank P < 0.0001). Smokers with subsequent LC incidence had a more rapid annual decline of FEV1 (by 5.2 ml, P = 0.038) than smoker control subjects. CONCLUSIONS: Gene methylation detected in sputum predicted FEV1 decline, LC incidence, and all-cause mortality in smokers. Rapid FEV1 decline may be a risk factor for LC incidence in smokers, which may explain a greater prevalence of airway obstruction seen in patients with LC.


Subject(s)
DNA Methylation/genetics , Genetic Predisposition to Disease , Genetic Testing/methods , Lung Neoplasms/genetics , Promoter Regions, Genetic , Smoking/adverse effects , Smoking/genetics , Sputum/chemistry , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , Respiratory Function Tests , Risk Factors
14.
J Thorac Oncol ; 13(3): 399-412, 2018 03.
Article in English | MEDLINE | ID: mdl-29233790

ABSTRACT

INTRODUCTION: A hormonal role in NSCLC development is well documented. We previously showed that the aromatase inhibitor (AI) anastrozole decreased development of tobacco carcinogen-induced lung tumors in a murine lung cancer prevention model and that aromatase and estrogen receptor were expressed in pulmonary inflammatory cells. METHODS: We utilized a tobacco carcinogen-induced lung tumor mouse model by treatment with 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), to determine whether an AI combined with nonsteroidal anti-inflammatory drugs results in greater lung tumor prevention effects compared to single-agent treatment. RESULTS: Combination of anastrozole (0.1 mg/kg/d) with aspirin (25 mg/kg/d) after NNK exposure resulted in significantly fewer and smaller lung tumors than did single-agent treatments and was accompanied by maximum decreases in circulating ß-estradiol (E2) and interleukin-6, tumor-infiltrating macrophages, and tumoral Ki67, phospho-mitogen-activated protein kinase, phospho-signal transducer and activator of transcription 3, and interleukin-17A expression. Preneoplasia arising after combination treatment showed the lowest Sox-2 expression, suggesting an inhibitory effect on proliferative capacity in the airways by blocking both E2 and inflammation. Anastrozole combined with ibuprofen instead of aspirin also showed enhanced antitumor effects. Moreover, male mice treated with NNK that received E2 in their drinking water showed greater levels of pulmonary macrophages and inflammatory markers than did the control, confirming an E2 effect on inflammation in the microenvironment. CONCLUSIONS: Our results suggest a benefit to joint targeting of the estrogen and inflammatory pathways for NSCLC prevention. Combining AIs with nonsteroidal anti-inflammatory drugs reduces circulating E2, proinflammatory cytokines, and macrophage recruitment in the lung microenvironment after tobacco exposure. This strategy could be particularly effective in women who have underlying pulmonary inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Aromatase Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Nicotiana/adverse effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aromatase Inhibitors/pharmacology , Carcinogens , Disease Models, Animal , Female , Humans , Lung Neoplasms/pathology , Mice
15.
Oncotarget ; 8(38): 63978-63985, 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28969046

ABSTRACT

CT screening for lung cancer reduces mortality, but will cost Medicare ∼2 billion dollars due in part to high false positive rates. Molecular biomarkers could augment current risk stratification used to select smokers for screening. Gene methylation in sputum reflects lung field cancerization that remains in lung cancer patients post-resection. This population was used in conjunction with cancer-free smokers to evaluate classification accuracy of a validated eight-gene methylation panel in sputum for cancer risk. Sputum from resected lung cancer patients (n=487) and smokers from Lovelace (n=1380) and PLuSS (n=718) cohorts was studied for methylation of an 8-gene panel. Area under a receiver operating characteristic curve was calculated to assess the prediction performance in logistic regressions with different sets of variables. The prevalence for methylation of all genes was significantly increased in the ECOG-ACRIN patients compared to cancer-free smokers as evident by elevated odds ratios that ranged from 1.6 to 8.9. The gene methylation panel showed lung cancer prediction accuracy of 82-86% and with addition of clinical variables improved to 87-90%. With sensitivity at 95%, specificity increased from 25% to 54% comparing clinical variables alone to their inclusion with methylation. The addition of methylation biomarkers to clinical variables would reduce false positive screens by ruling out one-third of smokers eligible for CT screening and could increase cancer detection rates through expanding risk assessment criteria.

16.
Am J Respir Crit Care Med ; 196(11): 1443-1455, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28853613

ABSTRACT

RATIONALE: Vascular endothelial growth factor down-regulates microRNA-1 (miR-1) in the lung endothelium, and endothelial cells play a critical role in tumor progression and angiogenesis. OBJECTIVES: To examine the clinical significance of miR-1 in non-small cell lung cancer (NSCLC) and its specific role in tumor endothelium. METHODS: miR-1 levels were measured by Taqman assay. Endothelial cells were isolated by magnetic sorting. We used vascular endothelial cadherin promoter to create a vascular-specific miR-1 lentiviral vector and an inducible transgenic mouse. KRASG12D mut/Trp53-/- (KP) mice, lung-specific vascular endothelial growth factor transgenic mice, Lewis lung carcinoma xenografts, and primary endothelial cells were used to test the effects of miR-1. MEASUREMENTS AND MAIN RESULTS: In two cohorts of patients with NSCLC, miR-1 levels were lower in tumors than the cancer-free tissue. Tumor miR-1 levels correlated with the overall survival of patients with NSCLC. miR-1 levels were also lower in endothelial cells isolated from NSCLC tumors and tumor-bearing lungs of KP mouse model. We examined the significance of lower miR-1 levels by testing the effects of vascular-specific miR-1 overexpression. Vector-mediated delivery or transgenic overexpression of miR-1 in endothelial cells decreased tumor burden in KP mice, reduced the growth and vascularity of Lewis lung carcinoma xenografts, and decreased tracheal angiogenesis in vascular endothelial growth factor transgenic mice. In endothelial cells, miR-1 level was regulated through phosphoinositide 3-kinase and specifically controlled proliferation, de novo DNA synthesis, and ERK1/2 activation. Myeloproliferative leukemia oncogene was targeted by miR-1 in the lung endothelium and regulated tumor growth and angiogenesis. CONCLUSIONS: Endothelial miR-1 is down-regulated in NSCLC tumors and controls tumor progression and angiogenesis.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Endothelial Cells/metabolism , Lung Neoplasms/pathology , MicroRNAs/metabolism , Neovascularization, Pathologic/pathology , Animals , Carcinoma, Non-Small-Cell Lung/blood supply , Carcinoma, Non-Small-Cell Lung/metabolism , Disease Models, Animal , Lung/blood supply , Lung/metabolism , Lung/pathology , Lung Neoplasms/blood supply , Lung Neoplasms/metabolism , Mice , Mice, Knockout , Neovascularization, Pathologic/metabolism , Polymerase Chain Reaction , Survival Analysis , Vascular Endothelial Growth Factor A/metabolism
17.
J Thorac Oncol ; 12(10): 1512-1523, 2017 10.
Article in English | MEDLINE | ID: mdl-28634123

ABSTRACT

INTRODUCTION: Low-dose computed tomography screening for lung cancer has a high false-positive rate with frequent discovery of indeterminate pulmonary nodules. Noninvasive biomarkers are needed to reduce false positives and improve risk stratification. A retrospective longitudinal evaluation was performed to assess chromosomal aneusomy in sputum by fluorescence in situ hybridization (CA-FISH) in four nested case-control studies. METHODS: Receiver operating characteristic analysis resulted in two grouped cohorts: a high-risk cohort (Colorado High-Risk Cohort and Colorado Nodule Cohort [68 case patients and 69 controls]) and a screening cohort (American College of Radiology Imaging Network/National Lung Screening Trial and Pittsburgh Lung Screening Study [97 case patients and 185 controls]). The CA-FISH assay was a four-target DNA panel encompassing the EGFR and v-myc avian myelocytomatosis viral oncogene homolog (MYC) genes, and the 5p15 and centromere 6 regions or the fibroblast growth factor 1 gene (FGFR1) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha gene (PIK3CA). A four-category scale (normal, probably normal, probably abnormal, and abnormal) was applied. Sensitivity, specificity, and positive and negative likelihood ratios (LRs) (with 95% confidence intervals [CIs]) were estimated for each cohort. RESULTS: Sensitivity and specificity were, respectively, 0.67 (95% CI: 0.55-0.78) and 0.94 (95% CI: 0.85-0.98) for high-risk participants and 0.20 (95% CI: 0.13-0.30) and 0.84 (95% CI: 0.78-0.89) for screening participants. The positive and negative LRs were, respectively, 11.66 (95% CI: 4.44-30.63) and 0.34 (95% CI: 0.24-0.48) for high-risk participants and 1.36 (95% CI: 0.81-2.28) and 0.93 (95% CI: 0.83-1.05) for screening participants. CONCLUSION: The high positive LR of sputum CA-FISH indicates that it could be a useful adjunct to low-dose computed tomography for lung cancer in high-risk settings. For screening, however, its low positive LR limits clinical utility. Prospective assessment of CA-FISH in the incidentally identified indeterminate nodule setting is ongoing in the Colorado Pulmonary Nodule Biomarker Trial.


Subject(s)
Lung Neoplasms/genetics , Aged , Chromosome Aberrations , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Risk Factors
18.
Cancer ; 123(15): 2936-2944, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28472537

ABSTRACT

BACKGROUND: Activation of the mesenchymal-epidermal transition factor (MET) tyrosine kinase and its ligand, hepatocyte growth factor (HGF), is implicated in resistance to epidermal growth factor receptor (EGFR) inhibitors. In this phase 1/2 trial, rilotumumab (an anti-HGF antibody) combined with erlotinib was evaluated in patients with metastatic, previously treated non-small cell lung cancer. METHODS: In phase 1, a dose de-escalation design was adopted with rilotumumab starting at 15 mg/kg intravenously every 3 weeks and oral erlotinib 150 mg daily. In phase 2, the disease control rate (DCR) (according to Response Evaluation Criteria in Solid Tumors) of the combination was evaluated using a Simon 2-stage design. The biomarkers examined included 10 plasma-circulating molecules associated with the EGFR and MET pathways. RESULTS: Without indications for de-escalation, the recommended phase 2 dose was dose level 0. Overall, 45 response-evaluable patients were enrolled (13 with squamous carcinoma, 32 with adenocarcinoma; 2 had confirmed EGFR mutations, 33 had confirmed wild-type [WT] EGFR, and 7 had KRAS mutations). The DCR for all patients was 60% (90% confidence interval [CI], 47.1%-71.3%). Median progression-free survival was 2.6 months (90% CI, 1.4-2.7 months), and median overall survival was 6.6 months (90% CI, 5.6-8.9 months). Among patients with WT EGFR, the DCR was 60.6% (90% CI, 46.3%-73.3%), median progression-free survival was 2.6 months (90% CI, 1.4-2.7 months), and median overall survival was 7.0 months (90% CI, 5.6-13.4 months). Elevated baseline levels of neuregulin 1 were associated with longer progression-free survival (hazard ratio, 0.41; 95% CI, 0.19-0.87), whereas elevated amphiregulin levels were associated with more rapid progression (hazard ratio, 2.14; 95% CI, 1.48-3.08). CONCLUSIONS: Combined rilotumumab and erlotinib had an acceptable safety profile, and the DCR met the prespecified criteria for success. In the EGFR WT group, the DCR exceeded published reports for erlotinib alone. High circulating levels of neuregulin 1 may indicate sensitivity to this combination. Cancer 2017;123:2936-44. © 2017 American Cancer Society.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Squamous Cell/drug therapy , Lung Neoplasms/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/secondary , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/secondary , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/secondary , Disease-Free Survival , ErbB Receptors/genetics , Erlotinib Hydrochloride/administration & dosage , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Mutation , Proportional Hazards Models , Treatment Outcome
19.
Oncotarget ; 8(15): 24063-24076, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28445992

ABSTRACT

The estrogen receptor (ER) promotes non-small cell lung cancer (NSCLC) proliferation. Since fibroblast growth factors (FGFs) are known regulators of stem cell markers in ER positive breast cancer, we investigated whether a link between the ER, FGFs, and stem cell markers exists in NSCLC. In lung preneoplasias and adenomas of tobacco carcinogen exposed mice, the anti-estrogen fulvestrant and/or the aromatase inhibitor anastrozole blocked FGF2 and FGF9 secretion, and reduced expression of the stem cell markers SOX2 and nanog. Mice administered ß-estradiol during carcinogen exposure showed increased FGF2, FGF9, SOX2, and Nanog expression in airway preneoplasias. In normal FGFR1 copy number NSCLC cell lines, multiple FGFR receptors were expressed and secreted several FGFs. ß-estradiol caused enhanced FGF2 release, which was blocked by fulvestrant. Upon co-inhibition of ER and FGFRs using fulvestrant and the pan-FGFR inhibitor AZD4547, phosphorylation of FRS2, the FGFR docking protein, was maximally reduced, and enhanced anti-proliferative effects were observed. Combined AZD4547 and fulvestrant enhanced lung tumor xenograft growth inhibition and decreased Ki67 and stem cell marker expression. To verify a link between ERß, the predominant ER in NSCLC, and FGFR signaling in patient tumors, mRNA analysis was performed comparing high versus low ERß expressing tumors. The top differentially expressed genes in high ERß tumors involved FGF signaling and human embryonic stem cell pluripotency. These results suggest interaction between the ER and FGFR pathways in NSCLC promotes a stem-like state. Combined FGFR and ER inhibition may increase the efficacy of FGFR inhibitors for NSCLC patients lacking FGFR genetic alterations.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Receptors, Estrogen/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction , Animals , Antineoplastic Agents, Hormonal/pharmacology , Benzamides/pharmacology , Biomarkers , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Estradiol/analogs & derivatives , Estradiol/pharmacology , Estrogens/metabolism , Female , Fibroblast Growth Factors/biosynthesis , Fibroblast Growth Factors/metabolism , Fulvestrant , Humans , Ligands , Lung Neoplasms/pathology , Mice , Neoplastic Stem Cells/metabolism , Piperazines/pharmacology , Protein Binding , Pyrazoles/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
20.
Cancer Immunol Res ; 5(3): 257-268, 2017 03.
Article in English | MEDLINE | ID: mdl-28108629

ABSTRACT

One of the most fundamental and challenging questions in the cancer field is how immunity in patients with cancer is transformed from tumor immunosurveillance to tumor-promoting inflammation. Here, we identify the transcription factor STAT3 as the culprit responsible for this pathogenic event in lung cancer development. We found that antitumor type 1 CD4+ T-helper (Th1) cells and CD8+ T cells were directly counter balanced in lung cancer development with tumor-promoting myeloid-derived suppressor cells (MDSCs) and suppressive macrophages, and that activation of STAT3 in MDSCs and macrophages promoted tumorigenesis through pulmonary recruitment and increased resistance of suppressive cells to CD8+ T cells, enhancement of cytotoxicity toward CD4+ and CD8+ T cells, induction of regulatory T cell (Treg), inhibition of dendritic cells (DC), and polarization of macrophages toward the M2 phenotype. The deletion of myeloid STAT3 boosted antitumor immunity and suppressed lung tumorigenesis. These findings increase our understanding of immune programming in lung tumorigenesis and provide a mechanistic basis for developing STAT3-based immunotherapy against this and other solid tumors. Cancer Immunol Res; 5(3); 257-68. ©2017 AACR.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Immunologic Surveillance , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Myeloid Cells/metabolism , STAT3 Transcription Factor/metabolism , Animals , CD8 Antigens/deficiency , Cell Movement/genetics , Cell Survival/genetics , Cell Transformation, Neoplastic/genetics , Cytotoxicity, Immunologic , Disease Models, Animal , Humans , Immunologic Surveillance/genetics , Immunologic Surveillance/immunology , Inflammation/complications , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Interferon-gamma/metabolism , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Myeloid Cells/immunology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Prognosis , STAT3 Transcription Factor/genetics , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...