Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Nat Biomed Eng ; 8(4): 443-460, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561490

ABSTRACT

Allogeneic mesenchymal stromal cells (MSCs) are a safe treatment option for many disorders of the immune system. However, clinical trials using MSCs have shown inconsistent therapeutic efficacy, mostly owing to MSCs providing insufficient immunosuppression in target tissues. Here we show that antigen-specific immunosuppression can be enhanced by genetically modifying MSCs with chimaeric antigen receptors (CARs), as we show for E-cadherin-targeted CAR-MSCs for the treatment of graft-versus-host disease in mice. CAR-MSCs led to superior T-cell suppression and localization to E-cadherin+ colonic cells, ameliorating the animals' symptoms and survival rates. On antigen-specific stimulation, CAR-MSCs upregulated the expression of immunosuppressive genes and receptors for T-cell inhibition as well as the production of immunosuppressive cytokines while maintaining their stem cell phenotype and safety profile in the animal models. CAR-MSCs may represent a widely applicable therapeutic technology for enhancing immunosuppression.


Subject(s)
Graft vs Host Disease , Immunosuppression Therapy , Mesenchymal Stem Cells , Receptors, Chimeric Antigen , Animals , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Immunosuppression Therapy/methods , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Graft vs Host Disease/immunology , Humans , Mesenchymal Stem Cell Transplantation/methods , T-Lymphocytes/immunology , Cadherins/metabolism , Mice, Inbred C57BL , Cytokines/metabolism
2.
Blood ; 143(3): 258-271, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-37879074

ABSTRACT

ABSTRACT: In the development of various strategies of anti-CD19 immunotherapy for the treatment of B-cell malignancies, it remains unclear whether CD19 monoclonal antibody therapy impairs subsequent CD19-targeted chimeric antigen receptor T-cell (CART19) therapy. We evaluated the potential interference between the CD19-targeting monoclonal antibody tafasitamab and CART19 treatment in preclinical models. Concomitant treatment with tafasitamab and CART19 showed major CD19 binding competition, which led to CART19 functional impairment. However, when CD19+ cell lines were pretreated with tafasitamab overnight and the unbound antibody was subsequently removed from the culture, CART19 function was not affected. In preclinical in vivo models, tafasitamab pretreatment demonstrated reduced incidence and severity of cytokine release syndrome and exhibited superior antitumor effects and overall survival compared with CART19 alone. This was associated with transient CD19 occupancy with tafasitamab, which in turn resulted in the inhibition of CART19 overactivation, leading to diminished CAR T apoptosis and pyroptosis of tumor cells.


Subject(s)
Antibodies, Monoclonal, Humanized , Immunotherapy , Therapeutic Index , Antigens, CD19 , Immunotherapy, Adoptive/methods
3.
Leukemia ; 37(10): 1953-1962, 2023 10.
Article in English | MEDLINE | ID: mdl-37626090

ABSTRACT

Chimeric antigen receptor T (CAR-T) cell therapy has drawn increasing attention over the last few decades given its remarkable effectiveness and breakthroughs in treating B cell hematological malignancies. Even though CAR-T cell therapy has outstanding clinical successes, most treated patients still relapse after infusion. CARs are derived from the T cell receptor (TCR) complex and co-stimulatory molecules associated with T cell activation; however, the similarities and differences between CARs and endogenous TCRs regarding their sensitivity, signaling pathway, killing mechanisms, and performance are still not fully understood. In this review, we discuss the parallel comparisons between CARs and TCRs from various aspects and how these current findings might provide novel insights and contribute to improvement of CAR-T cell therapy efficacy.


Subject(s)
Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Receptors, Chimeric Antigen/metabolism , Neoplasm Recurrence, Local/metabolism , Receptors, Antigen, T-Cell , Immunotherapy, Adoptive
4.
Cancer Immunol Res ; 11(9): 1222-1236, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37378662

ABSTRACT

The receptor tyrosine kinase AXL is a member of the TYRO3, AXL, and proto-oncogene tyrosine-protein kinase MER family and plays pleiotropic roles in cancer progression. AXL is expressed in immunosuppressive cells, which contributes to decreased efficacy of immunotherapy. Therefore, we hypothesized that AXL inhibition could serve as a strategy to overcome resistance to chimeric antigen receptor T (CAR T)-cell therapy. To test this, we determined the impact of AXL inhibition on CD19-targeted CAR T (CART19)-cell functions. Our results demonstrate that T cells and CAR T cells express high levels of AXL. Specifically, higher levels of AXL on activated Th2 CAR T cells and M2-polarized macrophages were observed. AXL inhibition with small molecules or via genetic disruption in T cells demonstrated selective inhibition of Th2 CAR T cells, reduction of Th2 cytokines, reversal of CAR T-cell inhibition, and promotion of CAR T-cell effector functions. AXL inhibition is a novel strategy to enhance CAR T-cell functions through two independent, but complementary, mechanisms: targeting Th2 cells and reversing myeloid-induced CAR T-cell inhibition through selective targeting of M2-polarized macrophages.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Axl Receptor Tyrosine Kinase , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases/genetics
5.
Curr Hematol Malig Rep ; 18(2): 9-18, 2023 04.
Article in English | MEDLINE | ID: mdl-36763238

ABSTRACT

PURPOSE OF REVIEW: Chimeric antigen receptor (CAR) T cell therapy is an immunotherapy that has resulted in tremendous progress in the treatment of patients with B cell malignancies. However, the remarkable efficacy of therapy is not without significant safety concerns. Herein, we will review the unique and potentially life-threatening toxicities associated with CAR-T cell therapy and their association with treatment efficacy. RECENT FINDINGS: Currently, CAR-T cell therapy is approved for the treatment of B cell relapsed or refractory leukemia and lymphoma, and most recently, multiple myeloma (MM). In these different diseases, it has led to excellent complete and overall response rates depending on the patient population and therapy. Despite promising efficacy, CAR-T cell therapy is associated with significant side effects; the two most notable toxicities are cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). The treatment of CAR-T-induced toxicity is supportive; however, as higher-grade adverse events occur, toxicity-directed therapy with tocilizumab, an IL-6 receptor antibody, and steroids is standard practice. Overall, a careful risk-benefit balance exists between the efficacy and toxicities of therapies. The challenge lies in the underlying pathophysiology of CAR-T-related toxicity which relies upon the activation of CAR-T cells. Some degree of toxicity is expected to achieve an effective response to therapy, and certain aspects of treatment are also associated with toxicity. As progress is made in the investigation and approval of new CARs, novel toxicity-directed therapies and toxicity-limited constructs will be the focus of attention.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/therapeutic use , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Multiple Myeloma/therapy , Multiple Myeloma/etiology , Cell- and Tissue-Based Therapy
6.
J Vis Exp ; (192)2023 02 10.
Article in English | MEDLINE | ID: mdl-36847405

ABSTRACT

Chimeric antigen receptor T (CART) cell therapy has emerged as a powerful tool for the treatment of multiple types of CD19+ malignancies, which has led to the recent FDA approval of several CD19-targeted CART (CART19) cell therapies. However, CART cell therapy is associated with a unique set of toxicities that carry their own morbidity and mortality. This includes cytokine release syndrome (CRS) and neuroinflammation (NI). The use of preclinical mouse models has been crucial in the research and development of CART technology for assessing both CART efficacy and CART toxicity. The available preclinical models to test this adoptive cellular immunotherapy include syngeneic, xenograft, transgenic, and humanized mouse models. There is no single model that seamlessly mirrors the human immune system, and each model has strengths and weaknesses. This methods paper aims to describe a patient-derived xenograft model using leukemic blasts from patients with acute lymphoblastic leukemia as a strategy to assess CART19-associated toxicities, CRS, and NI. This model has been shown to recapitulate CART19-associated toxicities as well as therapeutic efficacy as seen in the clinic.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Animals , Mice , T-Lymphocytes , Receptors, Antigen, T-Cell/genetics , Heterografts , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Immunotherapy, Adoptive/methods
7.
Front Pediatr ; 11: 1305657, 2023.
Article in English | MEDLINE | ID: mdl-38283399

ABSTRACT

Clinical trials of anti-CD19 chimeric antigen receptor T (CART19) cell therapy have shown high overall response rates in patients with relapsed/refractory B-cell malignancies. CART19 cell therapy has been approved by the US Food and Drug Administration for patients who relapsed less than 12 months after initial therapy or who are refractory to first-line therapy. However, durable remission of CART19 cell therapy is still lacking, and 30%-60% of patients will eventually relapse after CART19 infusion. In general, the prognosis of patients who relapse after CART19 cell therapy is poor, and various strategies to treat this patient population have been investigated extensively. CART19 failures can be broadly categorized by the emergence of either CD19-positive or CD19-negative lymphoma cells. If CD19 expression is preserved on the lymphoma cells, a second infusion of CART19 cells or reactivation of previously infused CART19 cells with immune checkpoint inhibitors can be considered. When patients develop CD19-negative relapse, targeting different antigens (e.g., CD20 or CD22) with CAR T cells, investigational chemotherapies, or hematopoietic stem cell transplantation are potential treatment options. However, salvage therapies for relapsed large B-cell lymphoma after CART19 cell therapy have not been fully explored and are conducted based on clinicians' case-by-case decisions. In this review, we will focus on salvage therapies reported to date and discuss the management of relapsed/refractory large B-cell lymphomas after CART19 cell therapy.

8.
Mol Ther Oncolytics ; 25: 69-77, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35434273

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable outcomes in individuals with hematological malignancies, but its success has been hindered by barriers intrinsic to the tumor microenvironment (TME), particularly for solid tumors, where it has yet to make its mark. In this article, we provide an updated review and future perspectives on features of the TME that represent barriers to CART cell therapy efficacy, including competition for metabolic fuels, physical barriers to infiltration, and immunosuppressive factors. We then discuss novel and promising strategies to overcome these obstacles that are in preclinical development or under clinical investigation.

9.
Leukemia ; 36(6): 1635-1645, 2022 06.
Article in English | MEDLINE | ID: mdl-35440691

ABSTRACT

Inhibitory myeloid cells and their cytokines play critical roles in limiting chimeric antigen receptor T (CART) cell therapy by contributing to the development of toxicities and resistance following infusion. We have previously shown that neutralization of granulocyte-macrophage colony-stimulating factor (GM-CSF) prevents these toxicities and enhances CART cell functions by inhibiting myeloid cell activation. In this report, we study the direct impact of GM-CSF disruption during the production of CD19-directed CART cells on their effector functions, independent of GM-CSF modulation of myeloid cells. In this study, we show that antigen-specific activation of GM-CSFKO CART19 cells consistently displayed reduced early activation, enhanced proliferation, and improved anti-tumor activity in a xenograft model for relapsed B cell malignancies. Activated CART19 cells significantly upregulate GM-CSF receptors. However, the interaction between GM-CSF and its upregulated receptors on CART cells was not the predominant mechanism of this activation phenotype. GM-CSFKO CART19 cell had reduced BH3 interacting-domain death agonist (Bid), suggesting an interaction between GM-CSF and intrinsic apoptosis pathways. In conclusion, our study demonstrates that CRISPR/Cas9-mediated GM-CSF knockout in CART cells directly ameliorates CART cell early activation and enhances anti-tumor activity in preclinical models.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Neoplasms , Cytokines/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Humans , Lymphocyte Activation , T-Lymphocytes
10.
J Vis Exp ; (180)2022 02 17.
Article in English | MEDLINE | ID: mdl-35253798

ABSTRACT

T cells genetically engineered to express chimeric antigen receptors (CAR) have shown unprecedented results in pivotal clinical trials for patients with B cell malignancies or multiple myeloma (MM). However, numerous obstacles limit the efficacy and prohibit the widespread use of CAR T cell therapies due to poor trafficking and infiltration into tumor sites as well as lack of persistence in vivo. Moreover, life-threatening toxicities, such as cytokine release syndrome or neurotoxicity, are major concerns. Efficient and sensitive imaging and tracking of CAR T cells enables the evaluation of T cell trafficking, expansion, and in vivo characterization and allows the development of strategies to overcome the current limitations of CAR T cell therapy. This paper describes the methodology for incorporating the sodium iodide symporter (NIS) in CAR T cells and for CAR T cell imaging using [18F]tetrafluoroborate-positron emission tomography ([18F]TFB-PET) in preclinical models. The methods described in this protocol can be applied to other CAR constructs and target genes in addition to the ones used for this study.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Multiple Myeloma/diagnostic imaging , Multiple Myeloma/therapy , Positron Emission Tomography Computed Tomography/methods , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , T-Lymphocytes
11.
Exp Hematol ; 108: 1-7, 2022 04.
Article in English | MEDLINE | ID: mdl-35150777

ABSTRACT

Development of chimeric antigen receptor T cell (CART) therapy has led to an unprecedented success against B-cell leukemia and lymphoma and resulted in U.S. Food and Drug Administration-approved treatment protocols. Despite the initial clinical response in B cell-related malignancies, high relapse rates suggest that much work is needed to uncover mechanisms of resistance. In chronic lymphocytic leukemia (CLL), the durable activity of CAR T-cells is limited, and CAR T-cell therapy success is lower than in other malignancies. T cells from these patients are vulnerable to a state of dysfunction because of stresses including chronic infection, rapid cell cycle on antigen recognition, immunosuppressive tumor microenvironment, and cancer-related treatments. T cells are also introduced to additional stresses when cultured ex vivo during the CAR T-cell manufacturing process. All these factors contribute to the limited regenerative capacity of T cells, which can lead to CAR T-cell treatment failure. In this article, we review the challenges of CAR T-cell therapy in patients with CLL and discuss potential strategies to overcome these challenges.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Receptors, Chimeric Antigen , Cell- and Tissue-Based Therapy , Humans , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Tumor Microenvironment
12.
Blood ; 139(26): 3708-3721, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35090171

ABSTRACT

Pivotal clinical trials of B-cell maturation antigen-targeted chimeric antigen receptor T (CART)-cell therapy in patients with relapsed/refractory multiple myeloma (MM) resulted in remarkable initial responses, which led to a recent US Food and Drug Administration approval. Despite the success of this therapy, durable remissions continue to be low, and the predominant mechanism of resistance is loss of CART cells and inhibition by the tumor microenvironment (TME). MM is characterized by an immunosuppressive TME with an abundance of cancer-associated fibroblasts (CAFs). Using MM models, we studied the impact of CAFs on CART-cell efficacy and developed strategies to overcome CART-cell inhibition. We showed that CAFs inhibit CART-cell antitumor activity and promote MM progression. CAFs express molecules such as fibroblast activation protein and signaling lymphocyte activation molecule family-7, which are attractive immunotherapy targets. To overcome CAF-induced CART-cell inhibition, CART cells were generated targeting both MM cells and CAFs. This dual-targeting CART-cell strategy significantly improved the effector functions of CART cells. We show for the first time that dual targeting of both malignant plasma cells and the CAFs within the TME is a novel strategy to overcome resistance to CART-cell therapy in MM.


Subject(s)
Cancer-Associated Fibroblasts , Multiple Myeloma , Bone Marrow , Cancer-Associated Fibroblasts/pathology , Cell- and Tissue-Based Therapy , Fibroblasts , Humans , Immunotherapy, Adoptive/methods , Multiple Myeloma/pathology , Tumor Microenvironment
13.
Cancer Immunol Res ; 9(9): 1035-1046, 2021 09.
Article in English | MEDLINE | ID: mdl-34244299

ABSTRACT

Although chimeric antigen receptor T (CART)-cell therapy has been successful in treating certain hematologic malignancies, wider adoption of CART-cell therapy is limited because of minimal activity in solid tumors and development of life-threatening toxicities, including cytokine release syndrome (CRS). There is a lack of a robust, clinically relevant imaging platform to monitor in vivo expansion and trafficking to tumor sites. To address this, we utilized the sodium iodide symporter (NIS) as a platform to image and track CART cells. We engineered CD19-directed and B-cell maturation antigen (BCMA)-directed CART cells to express NIS (NIS+CART19 and NIS+BCMA-CART, respectively) and tested the sensitivity of 18F-TFB-PET to detect trafficking and expansion in systemic and localized tumor models and in a CART-cell toxicity model. NIS+CART19 and NIS+BCMA-CART cells were generated through dual transduction with two vectors and demonstrated exclusive 125I uptake in vitro. 18F-TFB-PET detected NIS+CART cells in vivo to a sensitivity level of 40,000 cells. 18F-TFB-PET confirmed NIS+BCMA-CART-cell trafficking to the tumor sites in localized and systemic tumor models. In a xenograft model for CART-cell toxicity, 18F-TFB-PET revealed significant systemic uptake, correlating with CART-cell in vivo expansion, cytokine production, and development of CRS-associated clinical symptoms. NIS provides a sensitive, clinically applicable platform for CART-cell imaging with PET scan. 18F-TFB-PET detected CART-cell trafficking to tumor sites and in vivo expansion, correlating with the development of clinical and laboratory markers of CRS. These studies demonstrate a noninvasive, clinically relevant method to assess CART-cell functions in vivo.


Subject(s)
Neoplasms/diagnostic imaging , Positron-Emission Tomography/methods , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/metabolism , Symporters/analysis , Animals , Antigens, CD19 , Disease Models, Animal , Female , Humans , K562 Cells , Male , Neoplasms/immunology , Xenograft Model Antitumor Assays
14.
Mol Ther Oncolytics ; 20: 625-633, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33816781

ABSTRACT

Chimeric antigen receptor T (CART) cells are a promising immunotherapy that has induced dramatic anti-tumor responses in certain B cell malignancies. However, CART cell expansion and trafficking are often insufficient to yield long-term remissions, and serious toxicities can arise after CART cell administration. Visualizing CART cell expansion and trafficking in patients can detect an inadequate CART cell response or serve as an early warning for toxicity development, allowing CART cell treatment to be tailored accordingly to maximize therapeutic benefits. To this end, various imaging platforms are being developed to track CART cells in vivo, including nonspecific strategies to image activated T cells and reporter systems to specifically detect engineered T cells. Many of these platforms are clinically applicable and hold promise to provide valuable information and guide improved CART cell treatment.

15.
Leuk Lymphoma ; 62(9): 2052-2063, 2021 09.
Article in English | MEDLINE | ID: mdl-33682608

ABSTRACT

Chimeric antigen receptor T (CART) cell immunotherapy has yielded significant clinical success in treating certain hematological malignancies. However, despite high initial response rates, most patients eventually relapse. Resistance to CART cell therapy can stem from tumor cell mutations, T cell defects, and tumor microenvironment (TME) immunosuppression. Tumor cells can downregulate target antigen expression to evade CART cell detection or mutate death receptor pathways to resist CART cell cytotoxicity. Patient T cells can be intrinsically defective, and CART cells often undergo exhaustion. The TME is abundant with immunosuppressive cells and factors which contribute to suboptimal CART cell activity. Collectively, issues originating in tumor cells, T cells, and the TME present significant hurdles to long-term remission after CART cell therapy. Various strategies to combat CART cell resistance have shown promise in preclinical studies and early clinical trials and are crucial to achieving durable responses.


Subject(s)
Hematologic Neoplasms , Receptors, Chimeric Antigen , Cell- and Tissue-Based Therapy , Hematologic Neoplasms/therapy , Humans , Immunotherapy, Adoptive , Neoplasm Recurrence, Local , Receptors, Antigen, T-Cell , Tumor Microenvironment
16.
BioDrugs ; 35(2): 113-124, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33638865

ABSTRACT

Chimeric antigen receptor T (CART)-cell immunotherapies have opened a door in the development of specialized gene therapies for hematological and solid cancers. Impressive response rates in pivotal trials led to the FDA approval of CART-cell therapy for certain hematological malignancies. However, autologous CART products are costly and time-intensive to manufacture, and most patients experience disease relapse within 1 year of CART administration. Additionally, CART-cell efficacy in solid tumors is extremely limited. CART-cell therapy is also associated with serious toxicities. Manufacturing difficulties, intrinsic T-cell defects, CART exhaustion, and treatment-associated toxicities are some of the current barriers to widespread adoption of CART-cell therapy. Genome editing tools such as CRISPR/Cas systems have demonstrated efficacy in further engineering CART cells to overcome these limitations. In this review, we will summarize the current approaches that use CRISPR to facilitate off-the-shelf CART products, increase CART-cell efficacy, and minimize CART-associated toxicities.


Subject(s)
Receptors, Chimeric Antigen , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , Humans , Immunotherapy, Adoptive , T-Lymphocytes
17.
Mol Ther ; 29(4): 1529-1540, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33388419

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has yielded unprecedented outcomes in some patients with hematological malignancies; however, inhibition by the tumor microenvironment has prevented the broader success of CART cell therapy. We used chronic lymphocytic leukemia (CLL) as a model to investigate the interactions between the tumor microenvironment and CART cells. CLL is characterized by an immunosuppressive microenvironment, an abundance of systemic extracellular vesicles (EVs), and a relatively lower durable response rate to CART cell therapy. In this study, we characterized plasma EVs from untreated CLL patients and identified their leukemic cell origin. CLL-derived EVs were able to induce a state of CART cell dysfunction characterized by phenotypical, functional, and transcriptional changes of exhaustion. We demonstrate that, specifically, PD-L1+ CLL-derived EVs induce CART cell exhaustion. In conclusion, we identify an important mechanism of CART cell exhaustion induced by EVs from CLL patients.


Subject(s)
B7-H1 Antigen/blood , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , B7-H1 Antigen/genetics , Cell Line, Tumor , Extracellular Vesicles/genetics , Extracellular Vesicles/immunology , Female , Humans , Immunotherapy, Adoptive/methods , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Receptors, Antigen, T-Cell/blood , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Tumor Microenvironment/drug effects
18.
Neurol Clin ; 38(4): 953-963, 2020 11.
Article in English | MEDLINE | ID: mdl-33040871

ABSTRACT

Chimeric antigen receptor-engineered T (CAR-T) cell immunotherapy has been successful in treating many types of hematological malignancies. CAR-T therapy, however, has been associated with toxicities, including cytokine release syndrome (CRS) as well as immune effector cell-associated neurotoxicity syndrome (ICANS). ICANS presentation is variable, largely reversible, and manifests with encephalopathy and focal neurologic deficits. Treatment strategies largely are supportive. ICANS pathophysiology likely is related to that of CRS. Preclinical studies and clinical experience have shed light on the driving forces of ICANS and have yielded new strategies to mitigate ICANS occurrence.


Subject(s)
Immunotherapy, Adoptive/adverse effects , Neurotoxicity Syndromes/etiology , Humans , Receptors, Chimeric Antigen
19.
Front Immunol ; 11: 1973, 2020.
Article in English | MEDLINE | ID: mdl-32983132

ABSTRACT

Chimeric antigen receptor T (CART) cell immunotherapy has been remarkably successful in treating certain relapsed/refractory hematological cancers. However, CART cell therapy is also associated with toxicities which present an obstacle to its wider adoption as a mainstay for cancer treatment. The primary toxicities following CART cell administration are cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). New insights into the mechanisms of these toxicities have spurred novel treatment options. In this review, we summarize the available literature on the clinical manifestations, mechanisms, and treatments of CART-associated CRS and ICANS.


Subject(s)
Cytokine Release Syndrome/etiology , Immunotherapy, Adoptive/adverse effects , Neurotoxicity Syndromes/etiology , Animals , Biomarkers , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/prevention & control , Cytokine Release Syndrome/therapy , Disease Management , Disease Susceptibility , Humans , Immunotherapy, Adoptive/methods , Neurotoxicity Syndromes/diagnosis , Neurotoxicity Syndromes/prevention & control , Neurotoxicity Syndromes/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
20.
iScience ; 23(4): 101023, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32325413

ABSTRACT

Chimeric antigen receptors (CARs) are engineered receptors that mediate T cell activation. CARs are comprised of activating and co-stimulatory intracellular signaling domains derived from endogenous T cells that initiate signaling required for T cell activation, including ERK activation through the MAPK pathway. Understanding the mechanisms by which co-stimulatory domains influence signaling can help guide the design of next-generation CARs. Therefore, we constructed an experimentally validated computational model of anti-CD19 CARs in T cells bearing the CD3ζ domain alone or in combination with CD28. We performed a systematic analysis to explore the different mechanisms of CD28 co-stimulation on the ERK response time. Comparing these model simulations with experimental data indicates that CD28 primarily influences ERK activation by enhancing the phosphorylation kinetics of CD3ζ. Overall, we present a mechanistic mathematical modeling framework that can be used to gain insights into the mechanism of CAR T cell activation and produce new testable hypotheses.

SELECTION OF CITATIONS
SEARCH DETAIL
...