Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Immunol ; 209(4): 796-805, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35896340

ABSTRACT

Colonization by Helicobacter pylori is associated with gastric diseases, ranging from superficial gastritis to more severe pathologies, including intestinal metaplasia and adenocarcinoma. The interplay of the host response and the pathogen affect the outcome of disease. One major component of the mucosal response to H. pylori is the activation of a strong but inefficient immune response that fails to control the infection and frequently causes tissue damage. We have shown that polyamines can regulate H. pylori-induced inflammation. Chemical inhibition of ornithine decarboxylase (ODC), which generates the polyamine putrescine from l-ornithine, reduces gastritis in mice and adenocarcinoma incidence in gerbils infected with H. pylori However, we have also demonstrated that Odc deletion in myeloid cells enhances M1 macrophage activation and gastritis. Here we used a genetic approach to assess the specific role of gastric epithelial ODC during H. pylori infection. Specific deletion of the gene encoding for ODC in gastric epithelial cells reduces gastritis, attenuates epithelial proliferation, alters the metabolome, and downregulates the expression of immune mediators induced by H. pylori Inhibition of ODC activity or ODC knockdown in human gastric epithelial cells dampens H. pylori-induced NF-κB activation, CXCL8 mRNA expression, and IL-8 production. Chronic inflammation is a major risk factor for the progression to more severe pathologies associated with H. pylori infection, and we now show that epithelial ODC plays an important role in mediating this inflammatory response.


Subject(s)
Adenocarcinoma , Gastritis , Helicobacter Infections , Helicobacter pylori , Adenocarcinoma/metabolism , Animals , Epithelial Cells/metabolism , Gastric Mucosa/pathology , Helicobacter pylori/metabolism , Humans , Inflammation/metabolism , Mice , Ornithine Decarboxylase/genetics , Ornithine Decarboxylase/metabolism
2.
JCI Insight ; 7(12)2022 06 22.
Article in English | MEDLINE | ID: mdl-35579952

ABSTRACT

Macrophages play a crucial role in the inflammatory response to the human stomach pathogen Helicobacter pylori, which infects half of the world's population and causes gastric cancer. Recent studies have highlighted the importance of macrophage immunometabolism in their activation state and function. We have demonstrated that the cysteine-producing enzyme cystathionine γ-lyase (CTH) is upregulated in humans and mice with H. pylori infection. Here, we show that induction of CTH in macrophages by H. pylori promoted persistent inflammation. Cth-/- mice had reduced macrophage and T cell activation in H. pylori-infected tissues, an altered metabolome, and decreased enrichment of immune-associated gene networks, culminating in decreased H. pylori-induced gastritis. CTH is downstream of the proposed antiinflammatory molecule, S-adenosylmethionine (SAM). Whereas Cth-/- mice exhibited gastric SAM accumulation, WT mice treated with SAM did not display protection against H. pylori-induced inflammation. Instead, we demonstrated that Cth-deficient macrophages exhibited alterations in the proteome, decreased NF-κB activation, diminished expression of macrophage activation markers, and impaired oxidative phosphorylation and glycolysis. Thus, through altering cellular respiration, CTH is a key enhancer of macrophage activation, contributing to a pathogenic inflammatory response that is the universal precursor for the development of H. pylori-induced gastric disease.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Animals , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Inflammation/metabolism , Macrophages/metabolism , Mice
3.
Gastroenterology ; 162(3): 813-827.e8, 2022 03.
Article in English | MEDLINE | ID: mdl-34767785

ABSTRACT

BACKGROUND & AIMS: Because inflammatory bowel disease is increasing worldwide and can lead to colitis-associated carcinoma (CAC), new interventions are needed. We have shown that spermine oxidase (SMOX), which generates spermidine (Spd), regulates colitis. Here we determined whether Spd treatment reduces colitis and carcinogenesis. METHODS: SMOX was quantified in human colitis and associated dysplasia using quantitative reverse-transcription polymerase chain reaction and immunohistochemistry. We used wild-type (WT) and Smox-/- C57BL/6 mice treated with dextran sulfate sodium (DSS) or azoxymethane (AOM)-DSS as models of colitis and CAC, respectively. Mice with epithelial-specific deletion of Apc were used as a model of sporadic colon cancer. Animals were supplemented or not with Spd in the drinking water. Colonic polyamines, inflammation, tumorigenesis, transcriptomes, and microbiomes were assessed. RESULTS: SMOX messenger RNA levels were decreased in human ulcerative colitis tissues and inversely correlated with disease activity, and SMOX protein was reduced in colitis-associated dysplasia. DSS colitis and AOM-DSS-induced dysplasia and tumorigenesis were worsened in Smox-/- vs WT mice and improved in both genotypes with Spd. Tumor development caused by Apc deletion was also reduced by Spd. Smox deletion and AOM-DSS treatment were both strongly associated with increased expression of α-defensins, which was reduced by Spd. A shift in the microbiome, with reduced abundance of Prevotella and increased Proteobacteria and Deferribacteres, occurred in Smox-/- mice and was reversed with Spd. CONCLUSIONS: Loss of SMOX is associated with exacerbated colitis and CAC, increased α-defensin expression, and dysbiosis of the microbiome. Spd supplementation reverses these phenotypes, indicating that it has potential as an adjunctive treatment for colitis and chemopreventive for colon carcinogenesis.


Subject(s)
Carcinogenesis/drug effects , Carcinogenesis/genetics , Colitis/genetics , Colonic Neoplasms/genetics , Oxidoreductases Acting on CH-NH Group Donors/genetics , Spermidine/therapeutic use , Adenomatous Polyposis Coli Protein/genetics , Animals , Azoxymethane , Colitis/chemically induced , Colitis/enzymology , Colitis/prevention & control , Colitis, Ulcerative/enzymology , Colitis, Ulcerative/genetics , Colon/enzymology , Colon/pathology , Colonic Neoplasms/prevention & control , Dextran Sulfate , Gastrointestinal Microbiome/drug effects , Gene Expression Regulation/drug effects , Humans , Intestinal Mucosa/enzymology , Intestinal Mucosa/pathology , Male , Mice , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Precancerous Conditions/enzymology , Protective Factors , RNA, Messenger/metabolism , Severity of Illness Index , Spermidine/metabolism , Spermidine/pharmacology , Weight Loss/drug effects , alpha-Defensins/genetics , alpha-Defensins/metabolism , Polyamine Oxidase
4.
Gastroenterology ; 160(4): 1256-1268.e9, 2021 03.
Article in English | MEDLINE | ID: mdl-33189701

ABSTRACT

BACKGROUND & AIMS: Inflammation in the gastrointestinal tract may lead to the development of cancer. Dicarbonyl electrophiles, such as isolevuglandins (isoLGs), are generated from lipid peroxidation during the inflammatory response and form covalent adducts with amine-containing macromolecules. Thus, we sought to determine the role of dicarbonyl electrophiles in inflammation-associated carcinogenesis. METHODS: The formation of isoLG adducts was analyzed in the gastric tissues of patients infected with Helicobacter pylori from gastritis to precancerous intestinal metaplasia, in human gastric organoids, and in patients with colitis and colitis-associated carcinoma (CAC). The effect on cancer development of a potent scavenger of dicarbonyl electrophiles, 5-ethyl-2-hydroxybenzylamine (EtHOBA), was determined in transgenic FVB/N insulin-gastrin (INS-GAS) mice and Mongolian gerbils as models of H pylori-induced carcinogenesis and in C57BL/6 mice treated with azoxymethane-dextran sulfate sodium as a model of CAC. The effect of EtHOBA on mutations in gastric epithelial cells of H pylori-infected INS-GAS mice was assessed by whole-exome sequencing. RESULTS: We show increased isoLG adducts in gastric epithelial cell nuclei in patients with gastritis and intestinal metaplasia and in human gastric organoids infected with H pylori. EtHOBA inhibited gastric carcinoma in infected INS-GAS mice and gerbils and attenuated isoLG adducts, DNA damage, and somatic mutation frequency. Additionally, isoLG adducts were elevated in tissues from patients with colitis, colitis-associated dysplasia, and CAC as well as in dysplastic tumors of C57BL/6 mice treated with azoxymethane-dextran sulfate sodium. In this model, EtHOBA significantly reduced adduct formation, tumorigenesis, and dysplasia severity. CONCLUSIONS: Dicarbonyl electrophiles represent a link between inflammation and somatic genomic alterations and are thus key targets for cancer chemoprevention.


Subject(s)
Cell Transformation, Neoplastic/immunology , Colitis-Associated Neoplasms/immunology , Lipids/immunology , Precancerous Conditions/immunology , Stomach Neoplasms/immunology , Animals , Benzylamines/pharmacology , Benzylamines/therapeutic use , Cell Nucleus/metabolism , Cell Transformation, Neoplastic/drug effects , Colitis-Associated Neoplasms/microbiology , Colitis-Associated Neoplasms/pathology , Colitis-Associated Neoplasms/prevention & control , Disease Models, Animal , Epithelial Cells , Gastric Mucosa/cytology , Gastric Mucosa/drug effects , Gastric Mucosa/immunology , Gastric Mucosa/pathology , Gastritis/immunology , Gastritis/microbiology , Gastritis/pathology , Gerbillinae , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Helicobacter pylori/immunology , Helicobacter pylori/isolation & purification , Humans , Lipids/antagonists & inhibitors , Metaplasia/immunology , Metaplasia/microbiology , Metaplasia/pathology , Mice , Mice, Transgenic , Organoids , Precancerous Conditions/drug therapy , Precancerous Conditions/microbiology , Precancerous Conditions/pathology , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology , Stomach Neoplasms/prevention & control
5.
Cell Rep ; 33(11): 108510, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33326776

ABSTRACT

Innate responses of myeloid cells defend against pathogenic bacteria via inducible effectors. Deoxyhypusine synthase (DHPS) catalyzes the transfer of the N-moiety of spermidine to the lysine-50 residue of eukaryotic translation initiation factor 5A (EIF5A) to form the amino acid hypusine. Hypusinated EIF5A (EIF5AHyp) transports specific mRNAs to ribosomes for translation. We show that DHPS is induced in macrophages by two gastrointestinal pathogens, Helicobacter pylori and Citrobacter rodentium, resulting in enhanced hypusination of EIF5A. EIF5AHyp was also increased in gastric macrophages from patients with H. pylori gastritis. Furthermore, we identify the bacteria-induced immune effectors regulated by hypusination. This set of proteins includes essential constituents of antimicrobial response and autophagy. Mice with myeloid cell-specific deletion of Dhps exhibit reduced EIF5AHyp in macrophages and increased bacterial burden and inflammation. Thus, regulation of translation through hypusination is a critical hallmark of the defense of eukaryotic hosts against pathogenic bacteria.


Subject(s)
Anti-Infective Agents/therapeutic use , Lysine/analogs & derivatives , Macrophages/immunology , Animals , Anti-Infective Agents/pharmacology , Disease Models, Animal , Humans , Lysine/therapeutic use , Mice
6.
Oncogene ; 39(22): 4465-4474, 2020 05.
Article in English | MEDLINE | ID: mdl-32350444

ABSTRACT

Helicobacter pylori infection is the main risk factor for the development of gastric cancer, the third leading cause of cancer death worldwide. H. pylori colonizes the human gastric mucosa and persists for decades. The inflammatory response is ineffective in clearing the infection, leading to disease progression that may result in gastric adenocarcinoma. We have shown that polyamines are regulators of the host response to H. pylori, and that spermine oxidase (SMOX), which metabolizes the polyamine spermine into spermidine plus H2O2, is associated with increased human gastric cancer risk. We now used a molecular approach to directly address the role of SMOX, and demonstrate that Smox-deficient mice exhibit significant reductions of gastric spermidine levels and H. pylori-induced inflammation. Proteomic analysis revealed that cancer was the most significantly altered functional pathway in Smox-/- gastric organoids. Moreover, there was also less DNA damage and ß-catenin activation in H. pylori-infected Smox-/- mice or gastric organoids, compared to infected wild-type animals or gastroids. The link between SMOX and ß-catenin activation was confirmed in human gastric organoids that were treated with a novel SMOX inhibitor. These findings indicate that SMOX promotes H. pylori-induced carcinogenesis by causing inflammation, DNA damage, and activation of ß-catenin signaling.


Subject(s)
Adenocarcinoma/etiology , DNA Damage , Gastritis/enzymology , Helicobacter Infections/enzymology , Helicobacter pylori/pathogenicity , Oxidoreductases Acting on CH-NH Group Donors/physiology , Spermine/metabolism , Stomach Neoplasms/etiology , Adenocarcinoma/microbiology , Animals , Cell Transformation, Neoplastic , Gastritis/genetics , Gastritis/microbiology , Gastritis/pathology , Helicobacter Infections/genetics , Helicobacter Infections/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Organoids , Oxidoreductases Acting on CH-NH Group Donors/deficiency , Oxidoreductases Acting on CH-NH Group Donors/genetics , Proteome , RNA, Messenger/biosynthesis , Signal Transduction , Spermidine/biosynthesis , Stomach Neoplasms/microbiology , beta Catenin/physiology , Polyamine Oxidase
7.
Infect Immun ; 88(6)2020 05 20.
Article in English | MEDLINE | ID: mdl-32284370

ABSTRACT

Helicobacter pylori colonizes the gastric mucosa and secretes a pore-forming toxin (VacA). Two main types of VacA, m1 and m2, can be distinguished by phylogenetic analysis. Type m1 forms of VacA have been extensively studied, but there has been relatively little study of m2 forms. In this study, we generated H. pylori strains producing chimeric proteins in which VacA m1 segments of a parental strain were replaced by corresponding m2 sequences. In comparison to the parental m1 VacA protein, a chimeric protein (designated m2/m1) containing m2 sequences in the N-terminal portion of the m region was less potent in causing vacuolation of HeLa cells, AGS gastric cells, and AZ-521 duodenal cells and had reduced capacity to cause membrane depolarization or death of AZ-521 cells. Consistent with the observed differences in activity, the chimeric m2/m1 VacA protein bound to cells at reduced levels compared to the binding levels of the parental m1 protein. The presence of two strain-specific insertions or deletions within or adjacent to the m region did not influence toxin activity. Experiments with human gastric organoids grown as monolayers indicated that m1 and m2/m1 forms of VacA had similar cell-vacuolating activities. Interestingly, both forms of VacA bound preferentially to the basolateral surface of organoid monolayers and caused increased cell vacuolation when interacting with the basolateral surface compared to the apical surface. These data provide insights into functional correlates of sequence variation in the VacA midregion (m region).


Subject(s)
Bacterial Proteins/genetics , Bacterial Toxins/genetics , Genetic Variation , Helicobacter Infections/microbiology , Helicobacter pylori/physiology , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Gene Expression Regulation, Bacterial , Humans , Protein Domains , Protein Multimerization , Protein Transport , Vacuoles/metabolism , Vacuoles/ultrastructure
8.
mBio ; 10(5)2019 10 29.
Article in English | MEDLINE | ID: mdl-31662455

ABSTRACT

The reverse transsulfuration pathway is the major route for the metabolism of sulfur-containing amino acids. The role of this metabolic pathway in macrophage response and function is unknown. We show that the enzyme cystathionine γ-lyase (CTH) is induced in macrophages infected with pathogenic bacteria through signaling involving phosphatidylinositol 3-kinase (PI3K)/MTOR and the transcription factor SP1. This results in the synthesis of cystathionine, which facilitates the survival of pathogens within myeloid cells. Our data demonstrate that the expression of CTH leads to defective macrophage activation by (i) dysregulation of polyamine metabolism by depletion of S-adenosylmethionine, resulting in immunosuppressive putrescine accumulation and inhibition of spermidine and spermine synthesis, and (ii) increased histone H3K9, H3K27, and H3K36 di/trimethylation, which is associated with gene expression silencing. Thus, CTH is a pivotal enzyme of the innate immune response that disrupts host defense. The induction of the reverse transsulfuration pathway by bacterial pathogens can be considered an unrecognized mechanism for immune escape.IMPORTANCE Macrophages are professional immune cells that ingest and kill microbes. In this study, we show that different pathogenic bacteria induce the expression of cystathionine γ-lyase (CTH) in macrophages. This enzyme is involved in a metabolic pathway called the reverse transsulfuration pathway, which leads to the production of numerous metabolites, including cystathionine. Phagocytized bacteria use cystathionine to better survive in macrophages. In addition, the induction of CTH results in dysregulation of the metabolism of polyamines, which in turn dampens the proinflammatory response of macrophages. In conclusion, pathogenic bacteria can evade the host immune response by inducing CTH in macrophages.


Subject(s)
Bacteria/immunology , Bacteria/metabolism , Immunity, Innate , Macrophages/metabolism , Metabolic Networks and Pathways/physiology , Sulfur/metabolism , Animals , Bacteria/pathogenicity , Gene Silencing , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , Histones/metabolism , Humans , Immune Evasion , Immunoglobulins , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Polyamines/metabolism , RAW 264.7 Cells , Spermidine/metabolism , Spermine/metabolism , Transcription Factors
9.
Proc Natl Acad Sci U S A ; 116(11): 5077-5085, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30804204

ABSTRACT

Infection by Helicobacter pylori is the primary cause of gastric adenocarcinoma. The most potent H. pylori virulence factor is cytotoxin-associated gene A (CagA), which is translocated by a type 4 secretion system (T4SS) into gastric epithelial cells and activates oncogenic signaling pathways. The gene cagY encodes for a key component of the T4SS and can undergo gene rearrangements. We have shown that the cancer chemopreventive agent α-difluoromethylornithine (DFMO), known to inhibit the enzyme ornithine decarboxylase, reduces H. pylori-mediated gastric cancer incidence in Mongolian gerbils. In the present study, we questioned whether DFMO might directly affect H. pylori pathogenicity. We show that H. pylori output strains isolated from gerbils treated with DFMO exhibit reduced ability to translocate CagA in gastric epithelial cells. Further, we frequently detected genomic modifications in the middle repeat region of the cagY gene of output strains from DFMO-treated animals, which were associated with alterations in the CagY protein. Gerbils did not develop carcinoma when infected with a DFMO output strain containing rearranged cagY or the parental strain in which the wild-type cagY was replaced by cagY with DFMO-induced rearrangements. Lastly, we demonstrate that in vitro treatment of H. pylori by DFMO induces oxidative DNA damage, expression of the DNA repair enzyme MutS2, and mutations in cagY, demonstrating that DFMO directly affects genomic stability. Deletion of mutS2 abrogated the ability of DFMO to induce cagY rearrangements directly. In conclusion, DFMO-induced oxidative stress in H. pylori leads to genomic alterations and attenuates virulence.


Subject(s)
Bacterial Proteins/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Eflornithine/pharmacology , Helicobacter pylori/genetics , Mutation/genetics , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology , Animals , DNA Damage , Gene Deletion , Gene Rearrangement , Gerbillinae , Helicobacter pylori/drug effects , Helicobacter pylori/pathogenicity , Male , Oxidative Stress/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Virulence
10.
Cancer Res ; 79(7): 1600-1611, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30696658

ABSTRACT

Helicobacter pylori (H. pylori) is the strongest known risk for gastric cancer. The H. pylori cag type IV secretion system is an oncogenic locus that translocates peptidoglycan into host cells, where it is recognized by NOD1, an innate immune receptor. Beyond this, the role of NOD1 in H. pylori-induced cancer remains undefined. To address this knowledge gap, we infected two genetic models of Nod1 deficiency with the H. pylori cag + strain PMSS1: C57BL/6 mice, which rarely develop cancer, and INS-GAS FVB/N mice, which commonly develop cancer. Infected C57BL/6 Nod1-/- and INS-GAS Nod1-/- mice acutely developed more severe gastritis, and INS-GAS Nod1-/- mice developed gastric dysplasia more frequently compared with Nod1+/+ mice. Because Nod1 genotype status did not alter microbial phenotypes of in vivo-adapted H. pylori, we investigated host immunologic responses. H. pylori infection of Nod1-/- mice led to significantly increased gastric mucosal levels of Th1, Th17, and Th2 cytokines compared with Nod1 wild-type (WT) mice. To define the role of specific innate immune cells, we quantified cytokine secretion from H. pylori-infected primary gastric organoids generated from WT or Nod1-/- mice that were cocultured with or without WT or Nod1-/- macrophages. Infection increased cytokine production from gastric epithelial cells and macrophages and elevations were significantly increased with Nod1 deficiency. Furthermore, H. pylori infection altered the polarization status of Nod1-/- macrophages compared with Nod1+/+ macrophages. Collectively, these studies demonstrate that loss of Nod1 augments inflammatory and injury responses to H. pylori. Nod1 may exert its restrictive role by altering macrophage polarization, leading to immune evasion and microbial persistence. SIGNIFICANCE: These findings suggest that manipulation of NOD1 may represent a novel strategy to prevent or treat pathologic outcomes induced by H. pylori infection.


Subject(s)
Helicobacter pylori/pathogenicity , Nod1 Signaling Adaptor Protein/physiology , Stomach Neoplasms/microbiology , Animals , Carcinogenesis , Cytokines/biosynthesis , Gastric Mucosa/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nod1 Signaling Adaptor Protein/genetics , Stomach Neoplasms/immunology
11.
Front Immunol ; 9: 1242, 2018.
Article in English | MEDLINE | ID: mdl-29922289

ABSTRACT

Polyamines have been implicated in numerous biological processes, including inflammation and carcinogenesis. Homeostatic regulation leads to interconversion of the polyamines putrescine and the downstream metabolites spermidine and spermine. The enzyme spermine oxidase (SMOX), which back-converts spermine to spermidine, contributes to regulation of polyamine levels, but can also have other effects. We have implicated SMOX in gastric inflammation and carcinogenesis due to infection by the pathogen Helicobacter pylori. In addition, we reported that SMOX can be upregulated in humans with inflammatory bowel disease. Herein, we utilized Smox-deficient mice to examine the role of SMOX in two murine colitis models, Citrobacter rodentium infection and dextran sulfate sodium (DSS)-induced epithelial injury. In C. rodentium-infected wild-type (WT) mice, there were marked increases in colon weight/length and histologic injury, with mucosal hyperplasia and inflammatory cell infiltration; these changes were ameliorated in Smox-/- mice. In contrast, with DSS, Smox-/- mice exhibited substantial mortality, and increased body weight loss, colon weight/length, and histologic damage. In C. rodentium-infected WT mice, there were increased colonic levels of the chemokines CCL2, CCL3, CCL4, CXCL1, CXCL2, and CXCL10, and the cytokines IL-6, TNF-α, CSF3, IFN-γ, and IL-17; each were downregulated in Smox-/- mice. In DSS colitis, increased levels of IL-6, CSF3, and IL-17 were further increased in Smox-/- mice. In both models, putrescine and spermidine were increased in WT mice; in Smox-/- mice, the main effect was decreased spermidine and spermidine/spermine ratio. With C. rodentium, polyamine levels correlated with histologic injury, while with DSS, spermidine was inversely correlated with injury. Our studies indicate that SMOX has immunomodulatory effects in experimental colitis via polyamine flux. Thus, SMOX contributes to the immunopathogenesis of C. rodentium infection, but is protective in DSS colitis, indicating the divergent effects of spermidine.


Subject(s)
Colitis/etiology , Colitis/metabolism , Immunomodulation , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Animals , Citrobacter rodentium/physiology , Colitis/pathology , Cytokines/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Gene Deletion , Immunity, Mucosal/genetics , Immunomodulation/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mice , Mice, Knockout , Oxidoreductases Acting on CH-NH Group Donors/genetics , Spermidine/metabolism , Spermidine/pharmacology , Spermine/metabolism , Spermine/pharmacology , Polyamine Oxidase
12.
Gut ; 67(7): 1247-1260, 2018 07.
Article in English | MEDLINE | ID: mdl-28473630

ABSTRACT

OBJECTIVE: Gastric cancer is the third leading cause of cancer death worldwide and infection by Helicobacter pylori is the strongest risk factor. We have reported increased epidermal growth factor receptor (EGFR) phosphorylation in the H. pylori-induced human carcinogenesis cascade, and association with DNA damage. Our goal was to determine the role of EGFR activation in gastric carcinogenesis. DESIGN: We evaluated gefitinib, a specific EGFR inhibitor, in chemoprevention of H. pylori-induced gastric inflammation and cancer development. Mice with genetically targeted epithelial cell-specific deletion of Egfr (EfgrΔepi mice) were also used. RESULTS: In C57BL/6 mice, gefitinib decreased Cxcl1 and Cxcl2 expression by gastric epithelial cells, myeloperoxidase-positive inflammatory cells in the mucosa and epithelial DNA damage induced by H. pylori infection. Similar reductions in chemokines, inflammatory cells and DNA damage occurred in infected EgfrΔepi versus Egfrfl/fl control mice. In H. pylori-infected transgenic insulin-gastrin (INS-GAS) mice and gerbils, gefitinib treatment markedly reduced dysplasia and carcinoma. Gefitinib blocked H. pylori-induced activation of mitogen-activated protein kinase 1/3 (MAPK1/3) and activator protein 1 in gastric epithelial cells, resulting in inhibition of chemokine synthesis. MAPK1/3 phosphorylation and JUN activation was reduced in gastric tissues from infected wild-type and INS-GAS mice treated with gefitinib and in primary epithelial cells from EfgrΔepi versus Egfrfl/fl mice. Epithelial EGFR activation persisted in humans and mice after H. pylori eradication, and gefitinib reduced gastric carcinoma in INS-GAS mice treated with antibiotics. CONCLUSIONS: These findings suggest that epithelial EGFR inhibition represents a potential strategy to prevent development of gastric carcinoma in H. pylori-infected individuals.


Subject(s)
Antineoplastic Agents/therapeutic use , ErbB Receptors/antagonists & inhibitors , Gastritis/pathology , Helicobacter Infections/pathology , Quinazolines/therapeutic use , Stomach Neoplasms/prevention & control , Animals , Cell Culture Techniques , Epithelial Cells , Gastritis/microbiology , Gefitinib , Gerbillinae , Helicobacter pylori , Mice , Mice, Inbred C57BL , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology
13.
Cancer Res ; 77(9): 2401-2412, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28209611

ABSTRACT

Helicobacter pylori is the strongest risk factor for gastric adenocarcinoma, yet only a minority of infected persons ever develop this malignancy. One cancer-linked locus is the cag type 4 secretion system (cagT4SS), which translocates an oncoprotein into host cells. A structural component of the cagT4SS is CagY, which becomes rapidly altered during in vivo adaptation in mice and rhesus monkeys, rendering the cagT4SS nonfunctional; however, these models rarely develop gastric cancer. We previously demonstrated that the H. pylori cag+ strain 7.13 rapidly induces gastric cancer in Mongolian gerbils. We now use this model, in conjunction with samples from patients with premalignant lesions, to define the effects of a carcinogenic host environment on the virulence phenotype of H. pylori to understand how only a subset of infected individuals develop cancer. H. pylori cagY sequence differences and cagT4SS function were directly related to the severity of inflammation in human gastric mucosa in either a synchronous or metachronous manner. Serial infections of Mongolian gerbils with H. pylori strain 7.13 identified an oscillating pattern of cagT4SS function. The development of dysplasia or cancer selected for attenuated virulence phenotypes, but robust cagT4SS function could be restored upon infection of new hosts. Changes in the genetic composition of cagY mirrored cagT4SS function, although the mechanisms of cagY alterations differed in human isolates (mutations) versus gerbil isolates (addition/deletion of motifs). These results indicate that host carcinogenic phenotypes modify cagT4SS function via altering cagY, allowing the bacteria to persist and induce carcinogenic consequences in the gastric niche. Cancer Res; 77(9); 2401-12. ©2017 AACR.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Carcinogenesis/genetics , Helicobacter pylori/genetics , Stomach Neoplasms/genetics , Animals , Disease Models, Animal , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Gerbillinae/microbiology , Helicobacter Infections/genetics , Helicobacter Infections/microbiology , Helicobacter pylori/pathogenicity , Humans , Risk Factors , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology
14.
Am J Physiol Gastrointest Liver Physiol ; 305(2): G196-203, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23681474

ABSTRACT

Chronic infection of the gastric mucosa by Helicobacter pylori is associated with an increased risk of developing gastric cancer; however, the vast majority of infected individuals never develop this disease. One H. pylori virulence factor that increases gastric cancer risk is the cag pathogenicity island, which encodes a bacterial type IV secretion system. Cyclooxygenase-2 (COX-2) expression is induced by proinflammatory stimuli, leading to increased prostaglandin E2 (PGE2) secretion by gastric epithelial cells. COX-2 expression is increased in gastric tissue from H. pylori-infected persons. H. pylori also activates the epidermal growth factor receptor (EGFR) in gastric epithelial cells. We now demonstrate that H. pylori-induced activation of COX-2 in gastric cells is dependent upon EGFR activation, and that a functional cag type IV secretion system and direct bacterial contact are necessary for full induction of COX-2 by gastric epithelial cells. PGE2 secretion is increased in cells infected with H. pylori, and this induction is dependent on a functional EGFR. Increased apoptosis in response to H. pylori occurs in cells treated with a COX-2 inhibitor, as well as COX-2-/- cells, indicating that COX-2 expression promotes cell survival. In vivo, COX-2 induction by H. pylori is significantly reduced in mice deficient for EGFR activation compared with wild-type mice with a fully functional receptor. Collectively, these findings indicate that aberrant activation of the EGFR-COX-2 axis may lower the threshold for carcinogenesis associated with chronic H. pylori infection.


Subject(s)
Cyclooxygenase 2/metabolism , Epithelial Cells/metabolism , ErbB Receptors/metabolism , Helicobacter Infections/metabolism , Helicobacter pylori , Stomach/cytology , Animals , Cell Line , Cyclooxygenase 2/genetics , Dinoprostone , ErbB Receptors/genetics , Gene Expression Regulation, Enzymologic/physiology , Helicobacter Infections/microbiology , Mice , Mice, Knockout
15.
PLoS One ; 8(1): e54344, 2013.
Article in English | MEDLINE | ID: mdl-23372710

ABSTRACT

Helicobacter pylori is the strongest known risk factor for the development of gastric adenocarcinoma. H. pylori expresses a repertoire of virulence factors that increase gastric cancer risk, including the cag pathogenicity island and the vacuolating cytotoxin (VacA). One host element that promotes carcinogenesis within the gastrointestinal tract is Krüppel-like factor 5 (KLF5), a transcription factor that mediates key cellular functions. To define the role of KLF5 within the context of H. pylori-induced inflammation and injury, human gastric epithelial cells were co-cultured with the wild-type cag(+) H. pylori strain 60190. KLF5 expression was significantly upregulated following co-culture with H. pylori, but increased expression was independent of the cag island or VacA. To translate these findings into an in vivo model, C57BL/6 mice were challenged with the wild-type rodent-adapted cag(+) H. pylori strain PMSS1 or a PMSS1 cagE(-) isogenic mutant. Similar to findings in vitro, KLF5 staining was significantly enhanced in gastric epithelium of H. pylori-infected compared to uninfected mice and this was independent of the cag island. Flow cytometry revealed that the majority of KLF5(+) cells also stained positively for the stem cell marker, Lrig1, and KLF5(+)/Lrig1(+) cells were significantly increased in H. pylori-infected versus uninfected tissue. To extend these results into the natural niche of this pathogen, levels of KLF5 expression were assessed in human gastric biopsies isolated from patients with or without premalignant lesions. Levels of KLF5 expression increased in parallel with advancing stages of neoplastic progression, being significantly elevated in gastritis, intestinal metaplasia, and dysplasia compared to normal gastric tissue. These results indicate that H. pylori induces expression of KLF5 in gastric epithelial cells in vitro and in vivo, and that the degree of KLF5 expression parallels the severity of premalignant lesions in human gastric carcinogenesis.


Subject(s)
Adenocarcinoma/genetics , Cell Transformation, Neoplastic , Gastritis/genetics , Helicobacter Infections/genetics , Helicobacter pylori/genetics , Kruppel-Like Transcription Factors/genetics , Stomach Neoplasms/genetics , Adenocarcinoma/etiology , Adenocarcinoma/microbiology , Adenocarcinoma/pathology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coculture Techniques , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Epithelial Cells/pathology , Gastric Mucosa/metabolism , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Gastritis/etiology , Gastritis/microbiology , Gastritis/pathology , Gene Expression , Genomic Islands , Helicobacter Infections/complications , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Helicobacter pylori/metabolism , Helicobacter pylori/pathogenicity , Host-Pathogen Interactions , Humans , Kruppel-Like Transcription Factors/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Severity of Illness Index , Stomach Neoplasms/etiology , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology
16.
Clin Vaccine Immunol ; 20(2): 227-38, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23239803

ABSTRACT

Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1(-) strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1(-) mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1(-) CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains.


Subject(s)
Bacterial Outer Membrane Proteins/immunology , Immunization, Passive , Plague Vaccine/immunology , Recombinant Proteins/immunology , Yersinia pestis/immunology , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Immune Sera , Immunization , Levofloxacin , Mice , Ofloxacin/therapeutic use , Plague/immunology , Plague/microbiology , Plague/prevention & control , Plague Vaccine/therapeutic use , Plasminogen Activators/genetics , Plasminogen Activators/immunology , Rats , Recombinant Proteins/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use , Virulence Factors/genetics , Virulence Factors/immunology , Yersinia pestis/genetics
17.
Gene ; 506(2): 369-76, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22814176

ABSTRACT

The repeat in toxin (Rtx) of an environmental isolate ATCC 7966 of Aeromonas hydrophila consists of six genes (rtxACHBDE) organized in an operon similar to the gene organization found for the Rtx of the Vibrio species. The first gene in this operon (rtxA) encodes an exotoxin in vibrios, while other genes code for proteins needed for proper activation of RtxA and in secretion of this toxin from Vibrio cholerae. However, the RtxA of ATCC 7966, as well as from the clinical isolate SSU of A. hydrophila, was exclusively expressed and produced during co-infection of this pathogen with the host, e.g., HeLa cells, indicating that rtxA gene expression required host cell contact. Within the RtxA, an actin cross-linking domain (ACD) exists and to investigate the functionality of this domain, several truncated versions of ACD were generated to discern its minimal biological active region. Such genetically modified genes encoding ACD, which were truncated on either the NH(2) or the COOH terminal, as well as on both ends, were expressed from a bidirectional promoter of the pBI-enhanced green fluorescent protein (EGFP) vector in a HeLa-Tet-Off cell system. We demonstrated that only the full-length ACD of RtxA from A. hydrophila catalyzed the covalent cross-linking of the host cellular actin, whereas the ACD truncated on the NH(2), COOH or both ends did not exhibit such actin cross-linking characteristics. Further, we showed that the full-length ACD of A. hydrophila RtxA disrupted the actin cytoskeleton of HeLa cells, resulting in their rounding phenotype. Finally, our data provided evidence that the full-length ACD of RtxA induced host cell apoptosis. Our study is the first to report that A. hydrophila possesses a functional RtxA having an ACD that contributes to the host cell apoptosis, and hence could represent a potential virulence factor of this emerging human pathogen.


Subject(s)
Actins/chemistry , Aeromonas hydrophila/metabolism , Apoptosis , Bacterial Toxins/metabolism , Animals , Bacterial Toxins/chemistry , Base Sequence , Cross-Linking Reagents/pharmacology , Escherichia coli/metabolism , Female , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Mice , Models, Genetic , Molecular Sequence Data , Operon , Recombinant Proteins/metabolism
18.
Microbiology (Reading) ; 156(Pt 12): 3678-3688, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20798163

ABSTRACT

Recently, we reported that the type 6 secretion system (T6SS) of Aeromonas hydrophila SSU plays an important role in bacterial virulence in a mouse model, and immunization of animals with the T6SS effector haemolysin co-regulated protein (Hcp) protected them against lethal infections with wild-type bacteria. Additionally, we showed that the mutant bacteria deleted for the vasH gene within the T6SS gene cluster did not express the hcp gene, while the vasK mutant could express and translocate Hcp, but was unable to secrete it into the extracellular milieu. Both of these A. hydrophila SSU mutants were readily phagocytosed by murine macrophages, pointing to the possible role of the secreted form of Hcp in the evasion of the host innate immunity. By using the ΔvasH mutant of A. hydrophila, our in vitro data showed that the addition of exogenous recombinant Hcp (rHcp) reduced bacterial uptake by macrophages. These results were substantiated by increased bacterial virulence when rHcp was added along with the ΔvasH mutant in a septicaemic mouse model of infection. Analysis of the cytokine profiling in the intraperitoneal lavage as well as activation of host cells after 4 h of infection with the ΔvasH mutant supplemented with rHcp indicated that this T6SS effector inhibited production of pro-inflammatory cytokines and induced immunosuppressive cytokines, such as interleukin-10 and transforming growth factor-ß, which could circumvent macrophage activation and maturation. This mechanism of innate immune evasion by Hcp possibly inhibited the recruitment of cellular immune components, which allowed bacterial multiplication and dissemination in animals, thereby leading to their mortality.


Subject(s)
Aeromonas hydrophila/immunology , Bacterial Proteins/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Aeromonas hydrophila/genetics , Aeromonas hydrophila/pathogenicity , Animals , Bacterial Proteins/genetics , Cell Line , Female , Humans , Mice , Phagocytosis , Protein Transport , Virulence
19.
Microb Pathog ; 49(3): 122-34, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20553837

ABSTRACT

We recently characterized a T3SS effector, AexU, from a diarrheal isolate SSU of Aeromonas hydrophila, which exhibited ADP-ribosyltransferase (ADPRT) activity. Here we provided evidence that AexU also possessed GTPase-activating protein (GAP) activity, which was mainly responsible for host cell apoptosis and disruption of actin filaments. Earlier, we showed that the DeltaaexU null mutant was attenuated in a mouse model, and we now demonstrated that while the parental A. hydrophila strain could be detected in the lung, liver, and spleen of infected mice, the DeltaaexU mutant was rapidly cleared from these organs resulting in increased survivability of animals. Further, AexU prevented phosphorylation of c-Jun, JNK and IkappaBalpha and inhibited IL-6 and IL-8 secretion from HeLa cells. Our data indicated that AexU operated by inhibiting NF-kappaB and inactivating Rho GTPases. Importantly, however, when the DeltaaexU null mutant was complemented with the mutated aexU gene devoid of ADPRT and GAP activities, a higher mortality rate in mice with concomitant increase in the production of pro-inflammatory cytokines/chemokines was noted. These data indicated that either such a mutated AexU is a potent inducer of them or that AexU possesses yet another unknown activity that is modulated by ADPRT and GAP activities and results in this aberrant cytokine/chemokine production responsible for increased animal death.


Subject(s)
ADP Ribose Transferases/metabolism , Aeromonas hydrophila/enzymology , Aeromonas hydrophila/pathogenicity , Bacterial Proteins/metabolism , GTPase-Activating Proteins/metabolism , Virulence Factors/metabolism , ADP Ribose Transferases/genetics , Animals , Bacterial Proteins/genetics , Cytokines/metabolism , GTPase-Activating Proteins/genetics , Gene Deletion , Genetic Complementation Test , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/pathology , HeLa Cells , Humans , Liver/microbiology , Lung/microbiology , Mice , Spleen/microbiology , Survival Analysis , Virulence Factors/genetics
20.
Microbiology (Reading) ; 155(Pt 11): 3518-3531, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19729404

ABSTRACT

In this study, we delineated the role of N-acylhomoserine lactone(s) (AHLs)-mediated quorum sensing (QS) in the virulence of diarrhoeal isolate SSU of Aeromonas hydrophila by generating a double knockout Delta ahyRI mutant. Protease production was substantially reduced in the Delta ahyRI mutant when compared with that in the wild-type (WT) strain. Importantly, based on Western blot analysis, the Delta ahyRI mutant was unable to secrete type VI secretion system (T6SS)-associated effectors, namely haemolysin coregulated protein and the valine-glycine repeat family of proteins, while significant levels of these effectors were detected in the culture supernatant of the WT A. hydrophila. In contrast, the production and translocation of the type III secretion system (T3SS) effector AexU in human colonic epithelial cells were not affected when the ahyRI genes were deleted. Solid surface-associated biofilm formation was significantly reduced in the Delta ahyRI mutant when compared with that in the WT strain, as determined by a crystal violet staining assay. Scanning electron microscopic observations revealed that the Delta ahyRI mutant was also defective in the formation of structured biofilm, as it was less filamentous and produced a distinct exopolysaccharide on its surface when compared with the structured biofilm produced by the WT strain. These effects of AhyRI could be complemented either by expressing the ahyRI genes in trans or by the exogeneous addition of AHLs to the Delta ahyRI/ahyR(+) complemented strain. In a mouse lethality experiment, 50 % attenuation was observed when we deleted the ahyRI genes from the parental strain of A. hydrophila. Together, our data suggest that AHL-mediated QS modulates the virulence of A. hydrophila SSU by regulating the T6SS, metalloprotease production and biofilm formation.


Subject(s)
Acyl-Butyrolactones/metabolism , Aeromonas hydrophila/metabolism , Bacterial Proteins/metabolism , Biofilms , Quorum Sensing , Aeromonas hydrophila/genetics , Aeromonas hydrophila/pathogenicity , Animals , Bacterial Proteins/genetics , Cell Line , Gene Expression Regulation, Bacterial , Gene Knockout Techniques , Genetic Complementation Test , Humans , Mice , Peptide Hydrolases/metabolism , Regulon , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...